Тест-система для идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах Российский патент 2020 года по МПК C12Q1/68 

Описание патента на изобретение RU2728639C1

Изобретение относится к ветеринарной микробиологии, в частности к методам определения видовой принадлежности мяса с помощью полимеразной цепной реакции.

Известно использование набора для выполнения ПЦР в реальном времени с целью определения ДНК следующих животных - лошади, коровы, свиньи, осла, курицы, индейки, кошки, собаки и кролика с помощью (https://stylab.ru/netcat_files/userfiles/Files/Articles/Meat/Meat_1_04_2013.pdf.).

Известно использование набора для реализации метода обнаружения с использованием митохондриальной ДНК для идентификации мяса кошки в говядине и баранине, в котором используют технологию LAMP и ген субъединицы цитохрома с оксидазы I (COXI) на митохондриальной ДНК животных для кошек (https://ru.espacenet.com/ publication Details/biblio?II=0&ND=3&adjacent=true&locale=ru RU&FT = D&date=20151111&CC=CN&NR=105039540А&KC=А), в известном техническом решении реакцию амплификации проводили на водяной бане при постоянной температуре в течение 40 минут, а результаты наблюдали непосредственно невооруженным глазом, добавляя краситель к конечному продукту.

Также известно техническое решение, содержащее набор для идентификации ДНК животных, входящих в группу: мышь, крыса, собака, кошка и др. в кормах и мясных продуктах (патент РФ №2560579, C12Q 1/68, 2015 г.), включающее буфер для проведения полимеразной цепной реакции, смесь для ее проведения состоящая из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов специфичные для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец и другие контрольные образцы.

Однако известный набор используется для полимеразной цепной реакции с электрофоретической детекцией, в которой нуклеотидная последовательность непосредственно читается по электрофореграмме. Длина фрагмента, который может быть расшифрован этим методом, ограничивается разрешающей способностью метода гель-электрофореза, что влияет на точность диагностирования видовой принадлежности ткани животного в кормах и мясных продуктах.

Наиболее близким по технической сущности является техническое решение (патент РФ №2680094, кл. C12Q 1/68, G01N 33/569, 2019 г.) включающий буфер для проведения полимеразной цепной реакции, смесь для ее проведения состоящая из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов специфичные для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащую фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью:

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: НЕХ-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд, взятых в объемном соотношении 1:1.

Недостатком известного технического решения является отсутствие возможности выявления ДНК ткани кошки в кормах и пищевых продуктах, недостаточная точность из-за использования суспензии бактериофага, которая требует предварительную обработку, включая центрифугирование, концентрирование и перевод в определенный буферный раствор, что влечет за собой значительную трудоемкость и финансовые затраты, а также использование генома бактериофага Т4 с возможными повреждениями, после исследования, что также влияет на точность выявления объекта.

Техническим результатом является расширение функциональных возможностей и повышение точности идентификации видовой принадлежности, упрощение процесса подготовки внутреннего контрольного образца и уменьшение стоимости этого процесса.

Технический результат достигается тем, что в тест системе для идентификации ДНК ткани кошки домашней в сухих кормах и мясных полуфабрикатах, включающей буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящая из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов специфичные для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащуюх фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью:

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: НЕХ-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд, взятых в объемном соотношении 1:1, согласно изобретению для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца используют фрагменты геномов нативного бактериофага Т4 и кошки домашней со следующей нуклеотидной последовательностью:

F ATTCggCCTACATCCgTgAC - прямой праймер

R AgAAgACCCCTgCTACgACT - обратный праймер

Р R6G-CTTgAgTggAgTAgggCgg-BHQ1 - зонд.

Новизна заявляемого технического решения заключается в том, что для уменьшения трудозатрат, времени и расходного материала при проведении ПЦР используют для внутреннего и положительного контрольных образцов различные формы материала бактериофага Т4: фаголизат и фрагмент генома нативного бактериофага со специфическими к нему праймерами и зондом. Такая постановка ПЦР в реальном времени сокращает и упрощает процедуру анализа, снижает риск контаминации. Кроме того, флуоресцентная детекция продуктов амплификации осуществляется с использованием принципа выщепления флуоресцентной метки на 5' конце олигонуклеотидного зонда.

Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение технического результата и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».

Заявляемая тест-система рекомендована для использования в специализированных ветеринарных, санитарно-эпидемиологических, животноводческих, сельскохозяйственных предприятиях, что соответствует критерию «промышленная применимость».

Тест-система для идентификации ДНК ткани кошки домашней в сухих кормах и мясных полуфабрикатах реализуется следующим образом.

Для исследования сухих кормов и мясных полуфабрикатов на содержание ДНК ткани кошки проводят полимеразную цепную реакцию с флуоресцентной детекцией с применением термоциклера типа Rotor-Gene Q при соответствующих температурно-временных режимах амплификации и измеряют накопление флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей: JOE/Yellow для специфического сигнала для ДНК ткани кошки домашней и Cy5/Red - для внутреннего контрольного образца. Интерпретацию результатов проводят на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный.

Для повышения точности идентификации ткани кошки для внутреннего контрольного образца используют фаголизат бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, если концентрация фаговых частиц отклоняется в большую или меньшую сторону, то наблюдаются повторности сомнительных образцов. Для положительного контрольного образца используют смесь содержащую фрагменты геномов ДНК тканей кошки домашней и нативного бактериофага Т4 взятых в соотношении 1:1, со следующими нуклеотидными последовательностями:

F ATTCggCCTACATCCgTgAC прямой праймер

R AgAAgACCCCTgCTACgACT обратный праймер

Р R6G-CTTgAgTggAgTAgggCgg-BHQ1 зонд.

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: НЕХ-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд.

Использование для разных видов контроля различные формы материала бактериофага Т4: фаголизата и фрагмента генома нативного бактериофага Т4 со специфическими к нему праймерами и зондом обусловлено тем, что это позволяет контролировать корректное прохождение реакции в каждой пробирки, а также контролируется этап выделения ДНК из образцов. Кроме того, использование фаголизата бактериофага Т4, представляющего собой суспензию бактериофага, полученную после лизиса зараженных фагом клеток ткани, повышает чувствительность и упрощает процесс идентификации ткани кошки в продуктах.

Использование нативного бактериофага Т4, т.е. неповрежденного при исследовании обеспечивает улучшение синтеза ДНК, что также повышает качество идентификации ткани кошки в продуктах.

При конструировании праймеров и зонда основными требованиями были: степень гомологии (комплементарность) с выбранным участком гена; отсутствие самокоплементарных участков внутри олигонуклеотидов и комплементарности друг другу, чтобы не допускать возникновения устойчивых вторичных структур (димеров); близость значений температуры отжига праймеров.

Конструирование специфических праймеров и зонда осуществляли с помощью компьютерных программ на основании анализа нуклеотидных последовательностей референтных штаммов и изолятов, опубликованных на ресурсе GenBank и подбора условий для проведения ПЦР в реальном времени с применением разработанных праймеров и зонда, несущего флуорофор и тушитель, и комплементарного части амплифицируемого со специфическими праймерами фрагмента.

Праймеры, специфичные для кошки домашней были отобраны на основе митохондриальных последовательностей ДНК генома кошки домашней (Felis silvestris lybica isolate Pe4 NADH dehydrogenase subunit 5 (ND5) gene, partial cds; NADH dehydrogenase subunit 6 (ND6) gene, complete cds; tRNA-Glu gene, complete sequence; and cytochrome b (cyt b) gene, partial cds; mitochondrial, код доступа MG813967.1 complete genome, участок между 670 и 767). Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность. Для детекции продуктов амплификации были подобраны олигонуклеотидные флуоресцентно-меченные зонды Felis Р (комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров Felis F и Felis R) Зонд был помечен красителем R6G.

F ATTCggCCTACATCCgTgAC прямой праймер

R AgAAgACCCCTgCTACgACT обратный праймер

Р R6G-CTTgAgTggAgTAgggCgg-BHQ1 зонд.

Используя программу "Oligo 6.0", описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР. Ни одна из выбранных последовательностей не обнаружена в геноме любых видов растений и животных, которые потенциально встречаются вблизи тех, которые определены в кормах и пищевых продуктах.

В качестве внутреннего контроля использовался фаголизат бактериофага Т4, имеющий геномную ДНК порядка 170 тысяч пар нуклеотидов (Enterobacteria phage Т4Т, complete genome GenBank: HM137666.1). В результате анализа был выбран участок между 400 и 600 нуклеотидами, содержащий уникальные нуклеотидные последовательности, рассчитаны первичные структуры олигонуклеотидных праймеров, фланкирующих выбранный участок генома. Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность.

Для детекции продуктов амплификации подобран олигонуклеотидный флуоресцентно-меченный зонд Т4Р, комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров T4F и T4R. Зонд был помечен красителем Су5.

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: CY-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд.

Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР.

Пример конкретного применения тест-системы для идентификации ткани кошки

Для подтверждения эффективности тест-системы были использованы сухие корма в виде рыбной и мясной муки; сырые и термически обработанные мясные продукты, т.е. мясные полуфабрикаты.

От пробы плотной консистенции отбирают на исследование общую пробу весом 10-50 г. Гранулированную или консервированную продукцию перед исследованием (10-20 г) растирают в ступке до гомогенного состояния.

Лабораторные пробы (20-40 мг) отбирают на исследование в одноразовые микропробирки вместимостью 1,5 мл в двух повторах. Отобранные лабораторные пробы направляют на выделения ДНК.

Исследование проводят с помощью набора реагентов «ПЦР-КОШКА-ФАКТОР». Набор состоит из комплекта реагентов для проведения мультиплексной ПЦР (комплект №1) и комплекта контрольных образцов (комплект №2). Набор выпускается в двух вариантах: 1) Для анализа 55 образцов (включая контрольные образцы)

2) Для анализа 110 образцов (включая контрольные образцы).

Наборы используют в соответствии с инструкцией по применению набора реагентов «ПЦР-КОШКА-ФАКТОР» для определения ДНК тканей кошки домашней методом полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в РВ ТУ 21.10.60-163-51062356-2018, для диагностики in vitro, http://www.vetfaktor.ru/.

Состав набора приведен в Таблицах 1 и 2.

Исследования состоит из трех этапов:

• экстракция нуклеиновая кислота (НК);

• проведение реакции ПЦР РВ;

• учет результатов анализа.

Для экстракции (выделение) НК из исследуемых проб отбирают необходимое количество одноразовых пробирок объемом 1,5 мл, включая отрицательный контроль выделения. Во все пробирки с исследуемыми образцами, включая пробирку для отрицательного контрольного образца (ОКО), вносят по 10 мкл внутреннего контрольного образца (ВКО) для ткани кошки, в качестве которого, используют фаголизат бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл.

Следующий этап это подготовка образцов к проведению ПЦР.

Общий объем реакционной смеси - 25 мкл, объем ДНК-пробы - 10 мкл. Успешное прохождение реакции контролируют использованием положительного контрольного образца (ПКО) КОШКА, ВКО КОШКА и ДНК буфера. В качестве ПКО используют смесь содержащую фрагменты геномов ткани кошки и бактериофага Т4 взятых в соотношении 1:1, со следующими нуклеотидными последовательностями:

F ATTCggCCTACATCCgTgAC прямой праймер

R AgAAgACCCCTgCTACgACT обратный праймер

Р R6G-CTTgAgTggAgTAgggCgg-BHQ1 зонд

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: CY-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд.

В отдельной пробирке смешивают компоненты набора из расчета на каждую реакцию:

5 мкл ПЦР СМЕСЬ КОШКА;

10 мкл ПЦР БУФЕР КОШКА;

0,5 мкл TAQ POLYMERASE

Перемешивают смесь на вортексе и сбрасывают капли кратковременным центрифугированием.

Отбирают необходимое количество пробирок для амплификации ДНК исследуемых и контрольных проб. Вносят по 15 мкл приготовленной реакционной смеси.

Помещают подготовленные для проведения ПЦР пробирки в ячейки амплификатора и используют программное обеспечение прибора. Далее проводят ПЦР РВ с флуоресцентной детекцией.

Параметры температурно-временного режима амплификации на приборе «Rotor-Gene Q» представлены в таблице 3.

Интерпретация результатов анализа.

Полученные данные - кривые накопления флуоресцентного сигнала анализируются с помощью программного обеспечения используемого прибора для проведения ПЦР в соответствии с инструкцией производителя к прибору.

Учет результатов ПЦР РВ проводится по наличию или отсутствию пересечения кривой флуоресценции с установленной на соответствующем уровне пороговой линией (что соответствует наличию или отсутствию значения порогового цикла «Ct» для исследуемого образца).

Результат считается достоверным в случае корректного прохождения положительных и отрицательных контролей амплификации и экстракции ДНК в соответствии с таблицей 4.

Появление любого значения Ct в таблице 4 результатов для отрицательного контроля этапа экстракции ВК - на канале JOE/Yellow и для отрицательного контроля этапа ПЦР К - на любом из каналов свидетельствует о наличии контаминации реактивов или образцов. В этом случае результаты анализа для всех проб считаются недействительными. Требуется повторить анализ всех проб, а также предпринять меры по выявлению и ликвидации источника контаминации.

Образцы, для которых значение Ct по каналу Cy5/Red отсутствует или превышает 35 цикл (и при этом не получен положительный результат на канале JOE/Yellow) требуют повторного проведения исследования с этапа экстракции ДНК. Задержка в значениях пороговых циклов для исследуемых образцов указывает на присутствие ингибиторов в пробе(ах) или на ошибки при экстракции ДНК или при постановке реакции ПЦР РВ.

В образце обнаружена ДНК ткани кошки , если наблюдается экспоненциальный рост сигнала на канале JOE/Yellow, при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4).

Если для исследуемого образца по каналам JOE/Yellow значение Ct определяется позднее 37 цикла при корректном прохождении положительных и отрицательных контролей, образец исследуется повторно с этапа экстракция ДНК. Если при повторной постановке Ct более 37 результат считается отрицательным.

Образец считается отрицательным (ДНК не обнаружена), если не определяется значение Ct (не наблюдается рост специфического сигнала) на канале JOE/Yellow при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4), а значение Ct по каналу Cy5/Red менее 35.

Для исследуемых образцов (сухой корм и мясные полуфабрикаты) предел точности содержания тканей кошки представлен в таблице 5.

Для доказательства эффективности использования тест-системы для ПЦР с флуоресцентной детекцией в режиме реального времени проводился сравнительный анализ чувствительности заявляемого с прототипом, в котором использовался метод ПЦР с использованием внутреннего контроля в виде суспензии бактериофага, а в заявляемом - использовался фаголизат бактериофага и геном нативного бактериофага. Оказалось чувствительность ПЦР при обнаружении примеси ткани кошки в кормах и в мясных фаршах примерно в 1,5 раза выше. Трудоемкость и стоимость процесса определения ДНК ткани кошки в кормах и фаршах снизилась на 3-4,5%.

Перечень последовательностей <110> Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный аграрный университет имени И.Т. Трубилина». <120> Тест-система для идентификации ДНК ткани кошки домашней (Félissilvéstriscátus) в сухих кормах и мясных полуфабрикатах <140> 2019133100 <160> 6 <210> 1 < 211> 20 < 212> ДНК < 213> Félissilvéstriscátus < 400> 1 attcggcctacatccgtgac 20 <210> 2 < 211> 19 < 212> ДНК < 213> Félissilvéstriscátus < 400> 2 agaagacccctgctacgact 19 <210> 3 < 211> 19 < 212> ДНК < 213> Félissilvéstriscátus < 400> 3 cttgagtggagtagggcgg 19 <210> 4 < 211> 21 < 212> ДНК < 213> Бактериофаг Т4 < 400> 4 tacatataaatcacgcaaagc 21 <210> 5 < 211> 21 < 212> ДНК < 213> Бактериофаг Т4 < 400> 5 tagtatggctaatcttattgg 21 <210> 6 < 211> 21 < 212> ДНК < 213> Бактериофаг Т4 < 400> 6 acattggcactgaccgagttc 21

Похожие патенты RU2728639C1

название год авторы номер документа
Способ идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Котельникова Александра Андреевна
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Инюкина Татьяна Андреевна
  • Нестеренко Антон Алексеевич
  • Семененко Марина Петровна
  • Семенов Владимир Григорьевич
  • Забашта Сергей Николаевич
RU2728662C1
Тест-система для идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Котельникова Александра Андреевна
  • Барашкин Михаил Иванович
  • Кощаева Ольга Викторовна
  • Исаева Альбина Геннадьевна
  • Дельцов Александр Александрович
RU2728382C1
Способ идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Котельникова Александра Андреевна
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Дробин Юрий Дмитриевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Хахов Латиф Асланбиевич
  • Быкова Ольга Александровна
  • Лоретц Ольга Геннадьевна
  • Кривоногова Анна Сергеевна
  • Коломиец Сергей Николаевич
  • Забашта Николай Николаевич
RU2728612C1
Способ выявления ДНК ткани домашнего осла (Equus asinus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Баннов Василий Александрович
  • Черных Владимир Олегович
  • Котельникова Александра Андреевна
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Хахов Латиф Асланбиевич
  • Семененко Марина Петровна
  • Неверова Ольга Петровна
  • Кощаева Ольга Викторовна
  • Семенов Владимир Григорьевич
RU2726248C1
Тест-система для выявления ДНК ткани домашнего осла (Equus asinus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Котельникова Александра Андреевна
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Лунева Альбина Владимировна
  • Кривоногова Анна Сергеевна
  • Кузьминова Елена Васильевна
  • Гугушвили Нино Нодариевна
  • Тюрин Владимир Григорьевич
RU2726555C1
Способ идентификации видовой принадлежности тканей крыс и мышей в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Котельникова Александра Андреевна
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Исаева Альбина Геннадьевна
  • Шаравьев Павел Викторович
  • Лоретц Ольга Геннадьевна
  • Лихоман Александр Владимирович
RU2742952C1
Способ определения ДНК ткани дятла (Picidae) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Котельникова Александра Андреевна
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Хахов Латиф Асланбиевич
  • Гугушвили Нино Нодариевна
  • Исаева Альбина Геннадьевна
  • Шаравьев Павел Викторович
  • Усенко Валентина Владимировна
RU2714287C1
Тест-система для идентификации ДНК тканей крыс и мышей в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Дробин Юрий Дмитриевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Щукина Ирина Владимировна
  • Гугушвили Нино Нодариевна
  • Донник Ирина Михайловна
  • Усенко Валентина Владимировна
RU2725539C1
Способ идентификации ДНК ткани перепелки обыкновенной (Coturnix coturnix) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Лунева Альбина Владимировна
  • Лысенко Юрий Андреевич
  • Дайбова Любовь Анатольевна
  • Еньшин Александр Васильевич
  • Нестеренко Антон Алексеевич
RU2734035C1
Способ выявления ДНК вируса нодулярного дерматита (LSDV) в биологическом материале животных с помощью полимеразной цепной реакции в режиме реального времени 2019
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Баннов Василий Александрович
  • Кривонос Роман Анатольевич
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Чернов Альберт Николаевич
  • Шевченко Александр Алексеевич
  • Хахов Латиф Асланбиевич
  • Вацаев Шахаб Вахидович
  • Черных Владимир Олегович
  • Лысенко Юрий Андреевич
  • Дробин Юрий Дмитриевич
  • Шевкопляс Владимир Николаевич
  • Дмитрив Николай Иванович
  • Исаева Альбина Геннадьевна
  • Гулюкин Михаил Иванович
  • Семенов Владимир Григорьевич
  • Стекольников Анатолий Александрович
  • Барашкин Михаил Иванович
  • Василевич Федор Иванович
  • Ларионов Сергей Васильевич
RU2719719C1

Иллюстрации к изобретению RU 2 728 639 C1

Реферат патента 2020 года Тест-система для идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах

Изобретение относится к области биотехнологии. Изобретение представляет собой тест систему для идентификации ДНК ткани кошки домашней в сухих кормах и мясных полуфабрикатах, включающей буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящую из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов, специфичных для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующими активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащую фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью:

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер;

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер;

Т4Р: CY-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд, взятых в объемном соотношении 1:1, согласно изобретению для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца используют фрагменты геномов нативного бактериофага Т4 и кошки домашней со следующей нуклеотидной последовательностью:

F ATTCggCCTACATCCgTgAC - прямой праймер;

R AgAAgACCCCTgCTACgACT - обратный праймер;

Р R6G-CTTgAgTggAgTAgggCgg-BHQ1 - зонд. Изобретение позволяет расширить функциональные возможности и повысить точность идентификации видовой принадлежности, упростить процесс подготовки образцов. 5 табл.

Формула изобретения RU 2 728 639 C1

Тест система для идентификации ДНК ткани кошки домашней в сухих кормах и мясных полуфабрикатах, включающая буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящую из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов, специфичных для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующими активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащую фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью:

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер;

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер;

Т4Р: CY-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд,

взятых в объемном соотношении 1:1, отличающаяся тем, что для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца используют фрагменты геномов нативного бактериофага Т4 и кошки домашней со следующей нуклеотидной последовательностью:

F ATTCggCCTACATCCgTgAC - прямой праймер;

R AgAAgACCCCTgCTACgACT - обратный праймер;

Р R6G-CTTgAgTggAgTAgggCgg-BHQ1 - зонд.

Документы, цитированные в отчете о поиске Патент 2020 года RU2728639C1

Тест-система для выявления ДНК возбудителя лептоспироза (Leptospira spp.) у сельскохозяйственных животных 2018
  • Котельникова Александра Андреевна
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Василевич Федор Иванович
  • Донник Ирина Михайловна
  • Дробин Юрий Дмитриевич
  • Самуйленко Анатолий Яковлевич
  • Лысенко Александр Анатолиевич
  • Калашникова Татьяна Валерьевна
  • Кривонос Роман Анатольевич
  • Лоретц Ольга Геннадьевна
  • Шевкопляс Владимир Николаевич
  • Гринь Светлана Анатольевна
  • Кощаев Андрей Георгиевич
  • Исаева Альбина Геннадиевна
  • Кулакова Мария Александровна
RU2680094C1
CN 106435008 A, 22.02.2017
CN 108624659 A, 09.10.2018.

RU 2 728 639 C1

Авторы

Черных Олег Юрьевич

Малышев Денис Владиславович

Баннов Василий Александрович

Черных Владимир Олегович

Лысенко Александр Анатолиевич

Кощаев Андрей Георгиевич

Кривонос Роман Анатольевич

Дробин Юрий Дмитриевич

Котельникова Александра Андреевна

Лоретц Ольга Геннадьевна

Быкова Ольга Александровна

Щукина Ирина Владимировна

Тюрин Владимир Григорьевич

Даты

2020-07-30Публикация

2019-10-16Подача