Изобретение относится к парогазовым энергетическим установкам и, согласно ограничительной части п. 1 формулы изобретения, затрагивает также способ функционирования такой установки.
В случае атомной энергетической установки с реактором, имеющим водяное охлаждение, может вырабатываться насыщенный пар лишь ограниченного давления. Такой реактор работает, согласно уровню развития техники на сегодняшний день, с паром имеющим ограниченные параметры, например давление 63 Бар и температуру 280оС, и обеспечивает таким образом КПД преобразования производимой в реакторе энергии в электрическую, равный приблизительно 33% .
Само собой разумеется, что такая величина КПД преобразования не в состоянии удовлетворить современные требования по экономичности процесса выработки электроэнергии.
В случае энергетических установок работающих только на ископаемом топливе уровень техники представляющий собой газотурбинную установку с устройством для утилизации тепловых потерь (котел-утилизатор), может быть расширен путем комбинирования их с подключаемой за ними паротурбинной установкой, хотя сами паротурбинные установки могут достигать значений КПД более 40% .
Эти, так называемые, комбинированные установки отличаются очень хорошим КПД преобразования энергии, который для них колеблется в пределах 50-52% . Такие высокие значения КПД преобразования энергии возникают в результате совместной работы и, по меньшей мере, одного контура паротурбинной установки, при этом отработавшие газы из газотурбинной установки направляются через котел-утилизатор, в котором их остаточный тепловой потенциал используется для производства пара, необходимого для привода паровой турбины.
При этом, в комбинированных установках следует отметить тот факт, что протекающее изотермически испарение питательной воды в котле-утилизаторе естественно происходит при падении температуры отработавших газов, причем в середине процесса возникает совершено нежелательный перепад температур. В результате этого в котле-утилизаторе неизбежно возникают совершенно ненужные дополнительные потери энергии (потери работоспособности отработанных газов), которые, если проследить за ними по диаграмме Т/Q, могут быть изображены в виде плоскости между круто падающей кривой температуры отработавших газов в котле-утилизаторе и пологой кривой процесса испарения питательной воды.
Правда, в данном случае посредством применения котла-утилизатора со ступенями давления может быть проведено корректирование при котором не просто будет обеспечить работу более двух ступеней давления как с точки зрения конструкции, так и с точки зрения эксплуатации, так что с помощью такого котла-утилизатора нельзя будет в желаемой степени снизить потери энергии газа.
Известна комбинированная парогазовая установка, содержащая двигатель внутреннего сгорания, выполненный в виде газотурбинного двигателя, на выхлопе газовой турбины которого установлен теплообменник-утилизатор со ступенями поверхности нагрева, включенной в паросиловой контур. При этом одна из ступеней вышеотмеченной поверхности нагрева размещена вне теплообменника-утилизатора и установлена в камере сгорания. Паросиловой контур содержит паровую турбину и теплообменник, причем вышеуказанная поверхность нагрева включена в паросиловой контур за теплообменником. Газотурбинный двигатель работает на ископаемом топливе.
Такая установка позволяет использовать теплоту отработавших в газовой турбине газов для нагрева теплоносителя замкнутого паросилового контура в последовательно соединенных ступенях поверхности нагрева, размещенных в теплообменнике-утилизаторе и камере сгорания. Образованный таким образом пар теплоносителя замкнутого контура срабатывается в паровой турбине с выработкой энергии.
Именно в этой области изобретение может оказать существенную помощь. Целью изобретения, как указано в формуле изобретения, является сведение до минимума потерь эксергии в процессе работы парогазовых энергетических установок указанного выше типа.
Существенные преимущества изобретения следует видеть в том, что потенциал эксергии зависит от устройства для предварительного подогрева питательной воды, оптимально использующего вырабатываемую атомным реактором тепловую энергию, и от перегрева пара в котле-утилизаторе газовой турбины. Ввиду того, что как предварительный подогрев питательной воды, так и перегрев пара осуществляется в противотоке с процессом охлаждения дымовых газов, в данном случае не возникают потери эксергии, естественно превышающие требуемую степень теплопередачи. Если рассматривать проблему в целом, на всем протяжении процесса подвода теплового потока, который делится на тепло, вырабатываемое в атомной установке и в установке, работающей на ископаемом топливе, минимальные возможные потери эксергии и таким образом наименьшие потери КПД преобразования тепловой энергии в электрическую являются результатом плохой термической подгонки полного сопротивления. Решающее значение имеет, однако, то обстоятельство, что это особенно касается части энергии, вырабатываемой при сжигании ископаемого топлива, а именно потому, что при этом сводится до минимума загрязнение окружающей среды продуктами горения ископаемых горючих материалов.
Для случая применения природного газа, таким образом, дополнительно получаемая из ископаемого топлива электроэнергия может быть реализована с минимальными выбросами углекислого газа.
Другие преимущества изобретения связаны с увеличением мощности атомной энергетической установки за счет подключения перед ней некоторого числа двигателей внутреннего сгорания, преимущественно газотурбинных установок.
Если бы корректирущие мероприятия при упомянутой конфигурации схемы установки были незначительными или отсутствовали вовсе в отношении поглощающей способности паровой турбины и мощностных возможностей генератора, то можно было бы предусмотреть схему, при которой излишек пара ответвляется на ступени перегрева в теплообменник и в контур двигателей внутреннего сгорания, преимущественно в их камеры сгорания, и обеспечивает тем самым компенсацию потерь мощности, имеющих место в паровом контуре атомной энергетической установки за счет повышения мощностных параметров двигателей внутреннего сгорания.
Другим преимуществом изобретения является приспосабливаемость схемы. При ограничиваемом в количественном и/или в термическом отношении потенциале отработавших газов, освобождаемых из двигателей внутреннего сгорания, нет необходимости в сокращении номинальной мощности реактора.
Т. к. вполне возможным является предварительный подогрев в котле-утилизаторе лишь части потока питательной воды, поступающей из конденсатора и перегрев лишь части получаемого в реакторе пара, это позволяет устанавливать соответственно меньшую установку.
Однако, требуемая для этого часть энергии, получаемая от сжигания ископаемого топлива, преобразуется в соответствии с запрограммированным улучшенным КПД преобразования энергии.
Другое преимущество изобретения можно усмотреть в том, что схема может быть в значительной степени расширена и предполагает варианты комбинирования конструкции таким образом, что потенциал ступени предварительного подогрева в котле-утилизаторе используется в зависимости от потребности для эксплуатации постороннего потребителя тепла.
Преимущественные и целесообразные усовершенствования технического решения поставленной перед изобретением задачи характеризуются в прочих зависимых пунктах формулы изобретения.
Ниже изобретение изображается схематично и разъясняется на примере варианта исполнения, изображенного на чертежах. Все не требуемые для непосредственного разъяснения сути изобретения элементы при этом опущены. Направление течения сред-носителей энергии указано стрелками. На различных фигурах одни и те же элементы отмечены одинаковыми позициями.
На фиг. 1 изображена схема энергетической установки, которая представляет собой сочетание газотурбинной установки и ядерной энергетической установки; на фиг. 2 - / - диаграмма этой же установки на фиг. 1; на фиг. 3 - Sankey - диаграмма распределения потоков энергии этой же установки на фиг. 1; на фиг. 4 - схема энергетической установки с прогрессивным, перспективным реактором с водяным охлаждением, состыкованным в прогрессивной, перспективной газотурбинной установкой.
П р и м е р ы исполнения изобретения.
На фиг. 1 показана схема энергетической установки, которая основана на совместной работе атомной энергетической установки 1 с газотурбинной установкой 2, причем между обеими блоками подключается котел-утилизатор 3. Газотурбинная установка 2, подключаемая перед котлом-утилизатором 3 и атомной энергетической установкой 1, состоит в основном из компрессора 22, устанавливаемой предпочтительно на одном валу с ним газовой турбины 23, генератора 21, вращающегося синхронно с этими двумя машинами, и камеры сгорания 24. Всасываемый воздух 24 направляется в компрессор 22, где происходит его сжатие, вслед за этим сжатый воздух поступает в камеру сгорания 24. В качестве топлива 26 для осуществления рабочего процесса в камере сгорания 24 рассматриваются газообразные и/или жидкие горючие материалы. Образующиеся в камере сгорания 24 нагретые газы нагружают далее на газовую турбину 23, после высвобождения из которой эти находящиеся под давлением нагретые газы проходят в виде отработавших газов через котел-утилизатор 3, в котором их остаточный термический потенциал используется далее. Атомная энергетическая установка 1 состоит из реактора 11 на легкой воде, который обеспечивает изготовление необходимого количества насыщенного пара, а также из паровой турбины 12 высокого давления и подключенной вслед за ней паровой турбины 13 низкого давления. Генератор 14 стыкуется с паровыми турбинами. Через один или несколько пароотводящих трубопроводов разреженный пар выходит из паровой турбины низкого давления 13 в конденсатор 15, предпочтительно охлаждаемый водой или воздухом. Образуемый в результате этого конденсат отводится через насос 16 в котел-утилизатор 3, где посредством ступени С он предварительно нагревается для использования в качестве питательной воды.
Следующий этап способа заключается в том, что питательная вода направляется в реактор 11, где происходит собственно приготовление насыщенного пара В. После этого этапа приготовления в реакторе 11 насыщенный пар опять направляется в котел-утилизатор 3, где посредством другой теплопередающей ступени происходит окончательное приготовление нагретого пара А. Этот пар с максимальным термическим потенциалом нагружает затем паровую турбину 12 высокого давления, а затем и паровую турбину 13 низкого давления, которые обеспечивают вырабатывание электроэнергии состыкованными с ними генератором 14. После того как отработавшие газы 27 отдают значительную часть своего термического потенциала в котле-утилизатора 3, они выходят из него в виде дымовых газов 31 через не указанный на чертеже дымоход.
Перед котлом-утилизатором 3 на выбор может подключаться дополнительная отопительная установка, которая нагревает отработавшие газы 27 до более высокой, способствующей теплообмену температуры. Именно такое мероприятие повышает мощность производимой электроэнергии, но сокращает КПД преобразования энергии.
За количественную основу варианта исполнения изобретения далее приводится атомная энергетическая установка с реактором 11 на легкой воде для получения термической мощности 3000 МВт.
Для этого чтобы обеспечить предварительный нагрев питательной воды в ступени С до 220оС и обеспечить нагрев пара в ступени А, производимого в реакторе 11 при температуре кипения 280оС, до конечного значения 480оС в ступени В, в котле-утилизаторе 3 требуется наличие потока дымовых газов, который превышает поток свежего пара по массе в 2,75 раза. Применяемые в этом примере газовые турбины обеспечивают поток по массе дымовых газов величиной в 500 кг/с при 141 МВт. КПД преобразования энергии этих газовых турбин составляет 33,6% . Для того чтобы поток по массе свежего пара, равный 1627 кг/с перегреть в реакторе 11 и предварительно подогреть питательную воду, требуется суммарный поток 27 отработавших газов, равный 4480 кг/с. Для этого требуется девять газовых турбин, которые имеют суммарную мощность 1269 МВт. Т. к. паровые турбины 12 и 13, во всяком случае после соответствующей подгонки, работают на перегретом пару и в этом случае нет возможности для отбора некоторого количества пара для предварительного подогрева питательной воды, они развивают суммарную мощность, равную 1710 МВт. Сочетание газотурбинной установки 2 с некоторым количеством газовых турбин и атомной энергетической установки 1 позволяет достичь суммарной мощности в 3000 МВт по сравнению с 1000 МВт первоначальной атомной энергетической установки.
3779 МВт затрат ископаемого топлива для всех газовых турбин преобразуется в электрическую энергию с КПД = 52,4% , т. к. η иск. = Δ Р : Δ иск = (Pdt - Pdto + Pgt): Δ искл. = (1710 - 1000 + 1269) : 3779 = 0,524.
Одна единственная электростанция, скомбинированная соотвествующим образом, смогла бы вырабатывать двойную мощность и это в сочетании с очень высоким КПД преобразования энергии, что означало бы в высшей степени эффективное и поэтому экологически благоприятное использование ископаемого горючего материала, предпочтительно природного газа. Особенный интерес подобная схема представляет с точки зрения капиталовложений, если они рассматриваются в качестве мероприятий по обновлению уже существующей атомной энергетической установки.
При упомянутой концепции схема очень легко подстраивается, в случае если, например, поглощающая способность паровых турбин не соответствует количеству поступающего пара, и она не в состоянии пропустить его, или в данном случае все упирается в мощностные параметры имеющегося в расположении генератора, то избыток пара из ступени перегрева может перепускаться в котел-утилизатор 3 и вводиться в контур газотурбинной установки 2, преимущественно в ее камеру сгорания 24. Являющаяся результатом этого потеря мощности в паровом контуре ядерной энергетической установки в значительной мере компенсируется за счет увеличения мощности газотурбинных установок 2. Кроме того с точки зрения массы и/или количества тепла, нет необходимости в сокращении номинальной мощности реактора 11; часть В количествa насыщенного пара, не переработанного в котле-утилизаторе 3, отводится из реактора 11 и подводится непосредственно к паровым турбинам парового контура атомной энергетической установки 1. При этом преимуществом может быть то, что это избыточное, не перегретое с помощью котла-утилизатора 3 количество пара можно дросселировать и подводить к паровым турбинам в подходящем месте в слегка перегретом состоянии. Две, указанные последними, возможности использования схемы не изображены на фиг. 1, т. к. с помощью приведенного выше описания принцип их действия понятен без особого труда.
На фиг. 2 схема на фиг. 1 комментируется с помощью диаграмм. В связи с этим есть возможность пронаблюдать уменьшенные потери эксергии во время процесса преобразования на протяжении ступени В, а также во время предварительного подогрева С и перегрева А.
Результаты представляют собой лишь требуемые для обеспечения теплопередачи значения разности температур.
На фиг. 3 потоки энергии представлены в виде Sankey-диаграммы. При этом КПД преобразования расходуемой тепловой энергии в электрическую различаются следующим образом:
а) КПД атомной энергетической установки (см. фиг. 1, поз. 1)
η ат. = 1000 МВт : 300 МВт = 33,3%
в) КПД энергетической установки, работающей на ископаемом топливе (см. фиг. 1, поз. 2, 3)
η иск. = (42,3% + 23,7% ) : 126% = = 52,4%
с) КПД установки в целом (см. фиг. 1, поз. 1, 2, 3)
η сум. = (57% + 42,3% ) : (100% + 126% ) = 43,9%
Если учитывать, что используется прогрессивный, перспективный реактор с водяным охлаждением, который в состоянии производить и поставлять пар с температурой 340оС при давлении 147 Бар, то появляется возможность предусмотреть промежуточный перегрев. Если с установкой для промежуточного перегрева в дальнейшем будут стыковаться и газовые турбины следующего поколения, то можно будет приготовлять пар с температурой приблизительно 350оС, а КПД преобразования энергии установки будет существенно увеличен. При этих условиях может быть намечена перспективная концепция новой установки, действующей по описанному гибридному принципу с вытекающими отсюда интересными перспективами. На фиг. 4 показан пример исполнения такой схемы.
Приведенное ниже описание схемы на фиг. 4 ограничивается ее конструкцией. О мощности отдельных машин не говорится ничего. Газотурбинная установка 2 по своей конструкции соответствует газотурбинной установке на фиг. 1. В противоположность к ней атомная энергетическая установка 1а усовершенствована таким образом, что между паровой турбиной 12 высокого давления и паровой турбиной 13 низкого давления подключается паровая турбина 17 среднего давления. С целью обеспечения безопасности работы, между реактором 11a и агрегатом для утилизации тепла предусмотрено устройство 32 для передачи изолирующего тепла, которое является необходимым в связи с применением перспективного реактора. Это мероприятие в частности для реакторов с находящейся под давлением рабочей жидкости и без того является обусловленным с точки зрения процесса эксплуатации.
Первоначально применяемый котел-утилизатор 3, согласно фиг. 1, в данном случае заменяется тремя независимыми, работающими в зависимости от режима эксплуатации агрегатами для утилизации тепла. Конденсат из конденсатора 15 проходит в устройство предварительного подогрева 3а, в котором происходит предварительный подогрев питательной воды, и которое подключается вслед за устройством для перегрева 3в и за промежуточным перегревателем 3с. Приготовленная таким образом питательная вода протекает через уже упомянутое устройство 32 для передачи изолирующего тепла, отнсоящееся к реактору 11а, в котором происходит процесс парообразования. Затем эта среда устремляется через перегреватель 3в, также индивидуально нагруженный отработавшими газами 27, в котором заканчивается термический процесс парообразования. Перегретый пар при первом рабочем проходе нагружает паровую турбину 12 высокого давления. После уменьшения давления на этой ступени пар направляется через также нагружаемый посредством отработавших газов 27 промежуточный перегреватель 3с, в котором он вновь доводится до заданного термического состояния, прежде чем он будет использован для нагружения уже упомянутой паровой турбины 17 среднего давления, служащей в качестве промежуточого элемента конструкции между паровыми турбинами высокого и низкого давления. После прохождения этой ступени, в значительной степени разреженный пар устремляется непосредственно в паровую турбину 13 низкого давления, где он отдает свой остаточный энергетический потенциал. В перспективе пpедусматривается получение с помощью данной схемы, взятой за основу, значений КПД преобразования энергии, содержащейся в ископаемом топливе, от 60% . Для получения в теплообменнике 32 насыщенного пара достаточно высокого давления, требуемого для проведения промежуточного перегрева в реакторе 11а при охлаждении водой, требуется обеспечить очень высокое давление. Последнее обстоятельство может быть сглажено за счет подбора охлаждающей среды с высокой температурой кипения, например, натрия, или с помощью подходящего газа, как например CO2 или Не.
Посредством эксплуатации газотурбинной установки 2 при номинальных условиях с перекрытыми на 10% подводящими каналами компрессора для газовых турбин по сравнению с паровыми турбинами могут быть установлены более короткие интервалы освидетельствования. Если отнести сказанное выше к схемам согласно фиг. 1 и конечно согласно фиг. 2, это означало бы, что для приема всего потенциала энергии для предварительного подогрева и перегрева было бы необходимо десять машин. Наряду с этим следует принять во внимание тот факт, что котел-утилизатор 3 или агрегаты для утилизации тепла 3а, 3в, 3с и другие варианты исполнения устройства для утилизации тепла оснащают не показанными на чертежах устройствами для сжигания топлива. В результате этого номинальный режим части установки, работающей на пару, мог бы поддерживаться также при неисправностях, вызывающих остановку одной или нескольких газотурбинных установок 2.
Само собой разумеется, что в данном случае можно было бы предусмотреть перспективные варианты исполнения схемы, описанные на примере фиг. 1, а именно отвод излишнего количества пара с помощью обводных каналов в контур газотурбинной установки 2 или подвод части всего количества насыщенного пара в паровые турбины парового контура атомной энергетической установки 1а. (56) Патент FR N 2257778, кл. F 01 K 23/10, опубл. 1975.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭКСПЛУАТАЦИИ ПАРОГАЗОТУРБИННОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 1991 |
|
RU2015353C1 |
Газотурбинная установка | 1991 |
|
SU1834981A3 |
ГАЗОТУРБИННАЯ УСТАНОВКА И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ | 1994 |
|
RU2137935C1 |
ГЕОТЕРМАЛЬНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1992 |
|
RU2109982C1 |
Способ работы парогазовой установки с котлом-утилизатором и испарителями мгновенного вскипания питательной воды | 2017 |
|
RU2674822C2 |
СПОСОБ РАБОТЫ ПАРОГАЗОВОЙ УСТАНОВКИ ЭЛЕКТРОСТАНЦИИ | 2020 |
|
RU2740670C1 |
Способ и устройство получения энергии в термодинамических циклах | 2024 |
|
RU2823418C1 |
Способ работы парогазовой установки электростанции | 2023 |
|
RU2806956C1 |
ЯДЕРНАЯ РЕАКТОРНАЯ УСТАНОВКА С УСТРОЙСТВОМ ДЛЯ КОНТРОЛЯ ВЫВОДИМОГО В ТРУБУ ВОЗДУХА | 1992 |
|
RU2070343C1 |
СПОСОБ ЭКСПЛУАТАЦИИ АТОМНОЙ ПАРОТУРБИННОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2253917C2 |
Использование: в теплоэнергетике , преимущественно в комбинированных парогазовых установках. Сущность изобретения: комбинированная парогазовая энергетическая установка состоит из, по меньшей мере, одного двигателя 2 внутреннего сгорания, работающего на ископаемом топливе, по меньшей мере, одного парового контура 1 и, по меньшей мере, одного теплообменника-утилизатора 3. Теплообменник-утилизатор 3 установлен за двигателем внутреннего сгорания 2. Паросиловой контур 1 включает в себя, наряду с несколькими паровыми турбинами 12, 13, генератор 14, ряд других вспомогательных агрегатов 15, 16 и реактор 11 с водяным охлаждением, который производит насыщенный пар из поступающего в него количества питательной воды, предварительно подогреваемой в одной из ступеней поверхности нагрева теплообменника 3. Это количество насыщенного пара подводится затем в следующую ступень поверхности нагрева теплообменника 3, где и происходит окончательное приготовление пара для паровых турбин 12, 13. 2 с. п. , 7 з. п. ф-лы, 4 ил.
Авторы
Даты
1994-03-15—Публикация
1990-10-22—Подача