Изобретение относится к одноканальным абсорбционным анализаторам концентрации примесей в газах, которые могут быть использованы при решении проблем экологии, техники безопасности в химическом производстве и других областях.
Известно устройство для автоматического анализа газовых проб, принцип работы которого основан на попеременном заполнении рабочей камеры стандартной и рабочей средой, измерении и сравнении сигналов поглощения на этих средах светового излучения [1] . Устройство сложно само по себе и, кроме того, увеличивает время анализа, поскольку требует очистки рабочей камеры после каждого акта измерения.
Известен одноканальный анализатор жидкостей, паров и газов, в котором по ходу просвечивающего светового потока до приемника излучения расположена камера, состоящая из трех частей, объем одной из которых, обращенный к источнику излучения и выполняющий функцию емкости для исследуемого газа, изменяют электромеханическим устройством от минимального размера до оптимального [2] . Данный анализатор характеризуется усложненной конструкцией кюветы и системы подачи в нее анализируемой газовой смеси.
Наиболее близким по технической сущности к предложенному изобретению является оптический газоанализатор, содержащий источник излучения, осветительную систему, фотоприемник, оптический фильтр для смены спектрального диапазона, рабочую камеру для исследуемой смеси и устройство для изменения количества смеси в камере путем периодического изменения давления смеси, представляющее собой поршневой механизм [3] . Принцип действия анализатора основан на сопоставлении двух сигналов с фотоприемника, полученных в результате поглощения просвечивающего светового потока контролируемыми компонентами исследуемого газа при двух его различных давлениях в рабочей камере. Данный анализатор имеет то преимущество, что является одноканальным и не содержит сравнительной кюветы. Однако недостатком этого устройства является его сложность, прежде всего в части механизма подачи исследуемой смеси в рабочую камеру, в конструкции самой камеры и ее соединении с механизмом подачи смеси.
Изобретение направлено на упрощение конструкции абсорбционного газоанализатора с сохранением преимуществ, характерных для данного метода импульсных измерений.
Это достигается тем, что в газоанализаторе устройство для изменения исследуемой смеси в измерительном объеме выполнено в виде канала, соединенного с емкостью для исследуемой смеси и снабженного прерывателем свободно истекающей газовой струи, при этом ось канала перпендикулярна оптической оси осветительной системы. Осветительная система газоанализатора в одном из вариантов может быть образована объективами, передний из которых дает сходящийся пучок световых лучей от источника излучения. В качестве фотоприемника может быть использован пироэлектрический динамический приемник.
На чертеже представлена принципиальная компоновка предложенного оптического газоанализатора.
Газоанализатор содержит источник излучения 1, осветительную систему, образованную объективами 2 и 3, оптический фильтр 4 для смены спектрального диапазона, фотоприемник 5, емкость 6 для исследуемой газовой смеси, канал 7 для подачи газовой струи в измерительный объем, прерыватель 8 газовой струи. Ось канала 7 перпендикулярна оптической оси 9 осветительной системы. Передний объектив 2 может создавать сходящийся пучок световых лучей 10 от источника излучения 1. Прерыватель 8 может быть выполнен из простых элементов, например в виде вращающегося диска с одним или более отверстиями, заслонки или клапанов периодического действия.
Газоанализатор работает следующим образом.
Канал 7 устанавливают так, чтобы его торец не пересекал световые лучи 10 в осветительной системе и не затенял тем самым фотоприемник 5. Внутри осветительной системы ход лучей может быть как параллельным, так и сходящимся. Геометрию светового пучка внутри осветительной системы, диаметр выходного отверстия канала 7 и удаление торца канала от оптической оси 9 согласуют предварительно так, чтобы с учетом расширения газовой струи на выходе из канала диаметр поперечного сечения пучка в месте его пересечения со струей не превышал диаметра струи. Этим будет уменьшена фоновая засветка фотоприемника.
Исследуемую газовую смесь предварительно накачивают в емкость 6 при давлении, превышающем атмосферное. Давление смеси в емкости подбирают из условия создания такой концентрации определяемых компонентов в смеси, чтобы обеспечить наиболее оптимальное поглощение светового потока в смеси и чувствительность анализа. Это условие хорошо известно в области оптического абсорбционного метода анализа. Объем емкости выбирают исходя из предполагаемого числа циклов измерений, чтобы падение давления за это число циклов, а значит, и концентрация определяемых компонентов снизились на величину, допустимую исходя из заданной точности измерений.
Прерывателем 8 обеспечивается импульсная подача исследуемой газовой смеси из емкости 6 по каналу 7 в виде прерывистых газовых струй (порций) в измерительный объем, под которым понимается область пересечения зондирующего светового потока в осветительной системе со струей. На фотоприемник 5 попеременно поступают световой импульс, прошедший с небольшим поглощением в воздухе на промежутке между источником излучения 1 и фотоприемником (этот промежуток играет роль сравнительного канала, как в известном устройстве [2] ), при отсутствии струи (порции) газа в осветительной системе, и непоглощенная струей часть светового импульса, когда эта струя подана в осветительную систему. На фотоприемнике возникает переменный сигнал, амплитуда которого для случая малых поглощений прямо пропорциональна концентрации поглощающих компонентов исследуемой смеси.
В устройстве могут быть использованы источники излучения как в инфракрасной, так и в видимой и ультрафиолетовой областях спектра. Необходимая область спектра в зависимости от спектра поглощения определяемых компонентов в газовой смеси подбирается посредством оптического фильтра 4, который может быть установлен после источника излучения 1 или перед фотоприемником 5. В процессе измерений наряду с переменным сигналом на фотоприемник поступает постоянный световой поток, не несущий полезной информации. Такая засветка в большей мере возможна при превышении поперечного размера зондирующего потока диаметра струи. В этом случае целесообразно использовать пироэлектрические динамические приемники, не реагирующие на постоянную засветку.
Таким образом, осуществляя, по существу, режим двухканальных измерений, сам газоанализатор существенно проще по конструкции, поскольку не содержит измерительной и сравнительной камер как отдельных элементов конструкции (измерения проводятся на воздухе), а также сложных устройств для подачи и изменения давления в камере. Емкость для исследуемой газовой смеси может быть легко подсоединена через патрубок или штуцер к газопроводу, тем самым возможно проведение непрерывного контроля поступающего по газопроводу продукта. В случае анализа токсичных газов высокой концентрации могут быть предусмотрены герметизация и вытяжка газа из полости осветительной системы, что не намного усложнит устройство в целом.
(56) 1. Заявка Франции N 2295415, G 01 N 21/24, 1976.
2. Авторское свидетельство СССР N 272654, G 01 J 3/04, 1970.
3. Заявка Японии N 52-44217, G 01 N 21/02, 1977.
название | год | авторы | номер документа |
---|---|---|---|
МНОГОКОМПОНЕНТНЫЙ ГАЗОАНАЛИЗАТОР ИК ДИАПАЗОНА | 2004 |
|
RU2287803C2 |
Двухканальный газоанализатор | 1983 |
|
SU1176220A1 |
СПЕКТРАЛЬНЫЙ ГАЗОАНАЛИЗАТОР | 2006 |
|
RU2332657C1 |
ПОМЕХОЗАЩИЩЕННЫЙ РЕЗОНАНСНЫЙ СПЕКТРАЛЬНЫЙ ГАЗОАНАЛИЗАТОР | 2006 |
|
RU2331867C1 |
ОПТИКО-ЭЛЕКТРОННЫЙ СПЕКТРАЛЬНЫЙ ГАЗОАНАЛИЗАТОР | 2005 |
|
RU2299423C1 |
ИНФРАКРАСНЫЙ ОПТИЧЕСКИЙ ГАЗОАНАЛИЗАТОР | 2015 |
|
RU2596035C1 |
ОПТИКО-ЭЛЕКТРОННЫЙ СПЕКТРАЛЬНЫЙ ГАЗОАНАЛИЗАТОР | 2005 |
|
RU2299422C1 |
Инфракрасный оптический газоанализатор c автоматической температурной коррекцией | 2019 |
|
RU2710083C1 |
Устройство для автоматическогоАНАлизА гАзОВыХ пРОб | 1979 |
|
SU819641A1 |
ОПТИКО-ЭЛЕКТРОННЫЙ СПЕКТРАЛЬНЫЙ ГАЗОАНАЛИЗАТОР | 2005 |
|
RU2299424C1 |
Использование: в области оптического приборостроения, в частности, при решении проблем экологии, техники безопасности в химическом производстве с помощью газоанализаторов. Сущность изобретения: газоанализатор снабжен устройством для изменения количества исследуемой смеси в измерительном канале, выполненным в виде канала, соединенного с емкостью и снабженного прерывателем истекающей струи, при этом осветительная система может быть выполнена в виде двух объективов, а в качестве приемника излучения использован пироэлектрический динамический приемник. 2 з. п. ф-лы, 1 ил.
Авторы
Даты
1994-04-30—Публикация
1992-06-24—Подача