Изобретение относится к радиотехнике, а именно к технике связи, и может использоваться в спутниковых системах связи для распределения сигналов информации по направлениям.
Известен ретранслятор, принимающий сигналы, восстанавливающий и транслирующий сигнал информации на наземную станцию [1] .
Однако известный ретранслятор не обеспечивает коммутацию сигналов по направлениям.
Известен спутниковый ретранслятор, на борту которого расположен коммутатор, управляемый с наземной станции [2] . Приемные антенны ретранслятора принимают радиочастотные сигналы от нескольких земных станций спутниковой системы связи, блок обработки и коммутатор, расположенные на борту, обрабатывают и коммутируют сигналы для последующей передачи радиочастотных сигналов.
Известный ретранслятор не осуществляет поствольную коммутацию сигналов.
Известен спутниковый ретранслятор, принимающий сигналы от ряда входных лучей [3] . Ретранслятор восстанавливает и уплотняет и направляет сигналы для передачи их с помощью выходных лучей. Каждый принимаемый луч содержит ряд каналов с повторным использованием частоты, а каждый передаваемый луч содержит широкополосный канал.
Известный ретранслятор не обеспечивает гибкого распределения каналов по направлению.
Известен многоствольный ретранслятор, содержащий множество ветвей распределения, каждый из которых содержит последовательно соединенные антенну, усилитель, мультиплексор и несколько основных стволов, выходы которых подключены к входам сумматора, выход сумматора соединен с входом второго мультиплексора, выход которого через соответствующие смесители соединены с входами передающих антенн [4] .
В известном ретрансляторе нет возможности осуществить внутриствольную коммутацию сигналов по направлениям.
Пропускная способность спутниковых ретрансляторов определяется энерговооруженностью линии Космос-Земля, а именно эквивалентной излучаемой мощностью (ЭИИМ) спутникового ретранслятора. В условиях ограниченных ресурсов по массе и потребляемой мощности одним из способов увеличения пропускной способности, т. е. ЭИИМ, является увеличение коэффициента усиления антенны. Это означает, что наиболее целесообразно использовать в спутниковых ретрансляторах антенны с узкими лучами. С другой стороны, использование многолучевых антенн в отличие от антенны с глобальными лучами требует необходимости обеспечения связей между узкими лучами, чтобы сохранить гибкость системы и обеспечить возможность связи между любыми абонентами системы, в том числе находящимися в зоне видимости различных пространственно разнесенных узких антенных лучей. Кроме этого, желательно регулировать количественный уровень связей между лучами в соответствии с требуемым графиком. В противном случае, как это предложено сделать в известном ретрансляторе [4] , когда для обеспечения связей между лучами выделяются широкополосные стволы, будет недоиспользование пропускной способности ретранслятора.
В предложенном ретрансляторе для обеспечения межлучевых связей выделяется один из широкополосных стволов каждого приемного луча, который разбивается на более узкополосные каналы. Посредством коммутации этих каналов к любому передающему лучу обеспечивается связь между лучами. При необходимости к некоторым передающим лучам можно подключить целый ствол.
Предложенный бортовой ретранслятор позволяет в условиях ограниченного частотного ресурса и необходимости использования узких лучей сохранить гибкость системы и обеспечить возможность связи между любыми абонентами.
На фиг. 1 дана структурная схема бортового ретранслятора; на фиг. 2 - частотное распределение каналов в стволах.
Бортовой ретранслятор содержит m ветвей разнесения 1, каждая из которых состоит из приемной антенны 2, приемного усилителя 3, входного преобразователя частоты 4, усилителя промежуточной частоты 5, мультиплексора 6, мультиплексора 7 каналов, коммутатора 8 каналов, сумматора 9 каналов, коммутатора 10 стволов, сумматора 11, выходного преобразователя 12 частоты, усилителя 13 мощности и передающей антенны 14, также ретранслятор содержит формирователь гетеродинных частот 15, блок управления 16, формирователь частот 17 и блок коммутации сигналов 18.
Бортовой ретранслятор работает следующим образом.
От земных станций в направлении бортового ретранслятора передаются n групп сигналов, каждая из которых состоит из m сигналов, различающихся по несущей частоте, соответствующей определенному стволу, формируемых в мультиплексоре 6.
Каждый из n групповых сигналов принимается соответствующей данному частотному диапазону приемной антенной 2 и усиливается приемным усилителем 3, с выхода которого сигнал поступает на преобразователь 4 частоты, где происходит перенос всей группы из сигналов в диапазон промежуточных частот.
В каждой из n ветвей 1 перенос группы из m сигналов происходит в один и тот же диапазон промежуточных частот, обеспечивая таким образом возможность формирования m частотных стволов на одинаковых промежуточных частотах в ветвях 1.
С выхода преобразователя 4 усиливаются в усилителе 5 и поступают на мультиплексор 6 сигналы, где происходит частотное разделение на m сигналов с заданными амплитудно-частотными характеристиками стволов. Сигнал с каждого выхода мультиплексора 6 поступает на вход коммутатора стволов 10 соответствующего канала, а также на аналогичные коммутаторы стволов соответствующей промежуточной частоты в других ветвях ретранслятора.
Один из выходов мультиплексора 6 (одноименный в каждой ветви) поступает также на мультиплексор каналов 7, где происходит частотное разделение сигналов одного ствола перекрестных каналов на К каналов. Каждый выход мультиплексора каналов 7 подается на входы коммутатора 8 п/К каналов соответствующих стволов.
Для передачи одного из n m сигналов, попавшего в какой-либо ствол одной из ветвей 1 на частоте соответствующей стволу выходного усилителя 13 ветви, блок управления 16 либо по заложенной в нем программе, либо по команде с Земли вырабатывает соответствующий сигнал управления, который поступает на вход управления соответствующего коммутатора стволов 10. По команде блока 16 управления коммутатор 10 пропускает сигнал требуемого ствола на вход сумматора 11 ветви.
С выхода сумматора 11 сигнал посредством преобразователя 12 переносится в диапазон передающих частот усилителя 13, в котором усиливается и излучается через передающую антенну 14. Таким образом входной сигнал i ветви поступает на выход j ветви.
На фиг. 2 представлена структура организации стволов и каналов бортового ретранслятора.
Каждому приемному и передающему лучу распределено по несколько частотных стволов по 36 МГц на прием и передачу. Одни из стволов (луч 1,2. . . N), являются основными и предназначены для прямой ретрансляции между одноименными лучами-ветвями. Другие стволы являются общими для соседних ветвей. Общий ствол ветвей 1 может быть распределен несколькими способами.
Стволы одной ветви полностью транслируются в пределах одной ветви разнесения.
Стволы одной ветви полностью транслируются в пределах соседней ветви разнесения. Стволы разделяются на К частотных каналов, при этом каждому стволу распределено по K/2 частотных каналов и каждый канал одновременно подключается в п/К коммутаторов 10, соответствующих разным ветвям разнесения.
Для обеспечения межканальной связи может использоваться ствол каждой ветви 1, который подвергается канальной расфильтровке. В этом случае для передачи сигналов одного из каналов i ветви разнесения на частоте, соответствующей каналу j ветви разнесения по команде от блока управления 16 на управляющий вход коммутатора каналов 8 j ветви, сигнал от мультиплексора каналов 7 i ветви проходит на вход сумматора 8 и далее поступает на сумматор 11 j ветви. Далее работа аналогична изложенной при использовании коммутаторов стволов 10.
Сигналы гетеродинных частот, необходимые для переноса выходных сигналов в диапазон промежуточных частот и наоборот из диапазона промежуточных частот в диапазон передающих частот, формируются в формирователе гетеродинных частот 15 и формирователе частот 17 соответственно.
При использовании в ретрансляторе каналов, работающих в одном диапазоне частот на антенны с различной поляризацией, дополнительная межканальная коммутация возможна посредством связей между ветвями путем включения в каждую ветвь блоков коммутации сигналов 18. Межканальная коммутация целесообразна только при использовании антенн с узкими зональными лучами, которые пространственно разделены или работают в принципиально различных диапазонах частот. Однако использование для межканальной связи целых стволов, которые широкополосные и через которые часто организуется множество независимых каналов связи и переключение целого ствола на другой передающий луч, приведет либо к разрыву существующих связей, либо к неполному использованию новой конфигурации.
Использование для обеспечения межканальной связи коммутации стволов и каналов позволяет гибко и оптимально перераспределять пропускную способность ретранслятора в соответствии с изменением графика в системе связи.
название | год | авторы | номер документа |
---|---|---|---|
БОРТОВОЙ РЕТРАНСЛЯТОР | 2003 |
|
RU2251214C1 |
ГЛОБАЛЬНАЯ ТЕЛЕКОММУНИКАЦИОННАЯ СИСТЕМА СВЯЗИ И ВЕЩАНИЯ | 1999 |
|
RU2150787C1 |
Устройство адаптивной маршрутизации IP-пакетов на борту космического аппарата в спутниковых сетях связи | 2023 |
|
RU2823151C1 |
СИСТЕМА СПУТНИКОВОЙ СВЯЗИ ДЛЯ НАБЛЮДЕНИЯ ЗА ПОДВИЖНЫМИ И СТАЦИОНАРНЫМИ ОБЪЕКТАМИ, ПЕРЕДАЧИ ТЕЛЕФОННЫХ СООБЩЕНИЙ И ДАННЫХ | 2003 |
|
RU2253946C2 |
СПОСОБ РЕТРАНСЛЯЦИИ РАДИОСИГНАЛОВ С ГЕОСТАЦИОНАРНОЙ ОРБИТЫ | 2019 |
|
RU2714301C1 |
СИСТЕМА СПУТНИКОВОЙ СВЯЗИ | 1995 |
|
RU2090003C1 |
СПУТНИКОВАЯ СИСТЕМА СВЯЗИ | 1993 |
|
RU2054804C1 |
АНТЕННО-ЭЛЕКТРОННЫЙ БЛОК С УПРАВЛЯЕМОЙ КОНФИГУРАЦИЕЙ ДИАГРАММЫ НАПРАВЛЕННОСТИ | 2009 |
|
RU2408140C2 |
ПОДВИЖНАЯ СТАНЦИЯ СПУТНИКОВОЙ СВЯЗИ | 2020 |
|
RU2729037C1 |
МАТРИЧНЫЙ УСИЛИТЕЛЬ МОЩНОСТИ, ВЫПОЛНЕННЫЙ С ВОЗМОЖНОСТЬЮ ИЗМЕНЕНИЯ КОНФИГУРАЦИИ СО СКОРОСТЯМИ ДЛЯ ВРЕМЕННОГО РАЗДЕЛЕНИЯ КАНАЛОВ, И СПОСОБ СВЯЗИ В АРХИТЕКТУРЕ С ЧАСТОТНЫМ И ВРЕМЕННЫМ РАЗДЕЛЕНИЯМИ КАНАЛОВ | 2016 |
|
RU2730915C2 |
Использование: радиотехника, спутниковые системы связи. Сущность изобретения: бортовой ретранслятор содержит n ветвей разнесения 1, каждая из которых состоит из приемного усилителя 3, преобразователей частоты 4, 12, усилителя промежуточной частоты 5, мультиплексора 6, мультиплексора 7 каналов, коммутатора 8, сумматора 9 каналов, коммутатора 10 стволов, сумматора 11, усилителя мощности 13, приемной и передающей антенн 2, 14, формирователь гетеродинных частот 15, блок управления 16, формирователь часотот 17 и блок коммутации сигналов 18. 2 ил.
Авторы
Даты
1994-05-30—Публикация
1992-11-03—Подача