ДИАГНОСТИЧЕСКОЕ УСТРОЙСТВО Российский патент 1994 года по МПК A61B6/00 A61B10/00 

Описание патента на изобретение RU2017453C1

Изобретение относится к медицинской технике и предназначается для диагностического исследования злокачественных опухолей с использованием радиофосфорного метода и позволяет осуществить прогнозирование течения рака, эффективность консервативного лечения, оценку операбельности опухоли после консервативного лечения.

Известно диагностическое устройство, позволяющее с помощью радиометрии определять состояние злокачественных опухолей, представляющее собой игловидный корпус, в котором расположен датчик бета-частиц цилиндрической формы. Недостаток данного устройства - невысокая объективность информации.

Известно устройство, принятое за прототип, в корпусе игловидной формы которого размещен полупроводниковый датчик бета-частиц. В процессе исследования зонд вводят в исследуемую ткань, в том числе в опухоль. Измеряют количество импульсов, возникших от попавших в бета-датчик бета-частиц из тканей, прилежащих к зонду за время, достаточное для набора статистически достоверной информации. В большинстве случаев оно оказывается не менее 300 с.

Основным недостатком прототипа является отсутствие объективного критерия, который подтвердил бы или отверг внутриопухолевое расположение чувствительной части зонда. Необходимость внутриопухолевой локализации бета-детектора для получения точных данных об относительном накоплении 32Р опухолью связана с малой средней длиной пробега в тканях бета-частиц, испускаемых 32Р - 3 мм. Отсутствие объективной информации о взаимном расположении чувствительной части зонда и опухоли сказывается на результатах измерения относительного накопления опухолью (ОНОп) 32Р. Средняя величина ОНОп32Р в тех случаях, когда измерение производится на удельном препарате (то есть под контролем глаза) при размерах опухоли (рак молочной железы) <2 см составляет 1453±245% , а in vivo (только на основании пальпаторных данных) при таком же размере опухолей - 593±171%. Такие различия объясняются недостаточно точным попаданием чувствительной частью зонда в опухоль.

Техническим результатом изобретения является увеличение достоверности результатов исследования за счет обеспечения контроля местоположения точки изменения внутри опухоли и одновременно ее температуры.

Для этого в диагностическом устройстве, содержащем игловидный корпус, внутри которого расположен полупроводниковый датчик бета-частиц, дополнительно в игловидном корпусе в области расположения бета-датчика помещен термочувствительный датчик, находящийся в термическом контакте с игловидным корпусом и подключенный к индикатору температуры и ее приращения. Анализ показаний термодатчика позволяет осуществлять контроль внутриопухолевого положения бета-датчика, или осуществлять топическую диагностику опухоли.

Сущность изобретения поясняется чертежом, где представлена конструкция устройства. Диагностическое устройство состоит из игловидного корпуса 1 из материала с высокой теплопроводностью, герметично соединенного с несущей трубкой 2. Последняя состыкована с переходной втулкой 3, служащей для соединения с корпусом. Внутри игловидного корпуса помещен полупроводниковый бета-датчик 4 и термочувствительный элемент 5, имеющий тепловой контакт с корпусом. Термочувствительный элемент соединен с электронным индикатором температуры и ее приращения. Термочувствительный элемент может быть бусинкового типа, пленочный, термопарный и т.п. В качестве электронного индикатора температуры и ее приращении может быть использован цифровой вольтметр.

Устройство работает следующим образом.

На первом этапе исследования проводят топическую температурную диагностику рака, на втором - непосредственно бета-радиометрию. Для этого после внедрения устройства в предполагаемую опухоль производят измерение внутритканевой температуры с помощью термодатчика, совмещенного в одной игле с бета-детектором; счет бета-импульсов осуществляется при расположении бета-детектора в точке, характеризующейся данными термометрии как рак: гипертермия ≥1,0 градуса по Цельсию в сравнении с симметричным местом здоровой молочной железы или приращение температуры ниже порогового значения, определенного экспериментально, либо в точке с минимальным приращением температуры.

Для этого больной внутривенно вводится двузамещенный фосфат натрия, меченный 32Р, в дозе 111 КБк/кг. Через 24-96 часов игольчатым бета-детектором измеряют фоновую радиоактивность трижды по 100 с - а1, а2, а3. Вычисляют среднюю арифметическую
a =
Больная ложится на спину. 5%-ным спиртовым раствором йода обрабатывают кожу молочных желез, 0,5% -ным раствором новокаина анестезируют кожу на участке, симметричном опухоли и кожу над опухолью. Иглой диаметром 1,5-2,0 мм перфорируют кожу здоровой молочной железы, игольчатый бета-детектор внедряют в ткань железы на участке, симметричном опухоли, через 10 с (время, перекрывающее инерционность термодатчика) снимают показатель температуры t0, трижды измеряют число импульсов за интервалы по 100 с - b1, b2, b3. Бета-детектор извлекают, вычисляют среднюю арифметическую
b =
Затем иглой диаметром 1,5-2,0 мм перфорируют кожу больной молочной железы, бета-детектор внедряют в предполагаемую опухоль, через 10 с снимают показатель температуры t1.

Если t1 превышает t0 на 1,0 градус Цельсия или больше, внутриопухолевое расположение бета-детектора считается подтвержденным, в этом случае: трижды измеряют число импульсов за интервалы по 100 с - с1, с2, с3. Бета-детектор извлекают. Кожу в местах пункций обрабатывают раствором йода. Вычисляют среднюю арифметическую
c =
Если уровень гипертермии не достигает 1,0 градуса, в этой же точке снимают показатель температуры t2 через 200 с после t1 и вычисляют приращение температуры
v =
Если приращение температуры во время v равно пороговому или меньше его, подтверждается внутриопухолевое расположение бета-детектора, производят измерение с.

Если приращение температуры v выше порогового, внутриопухолевое расположение бета-детектора ставится под сомнение. В этом случае производят его перемещение. В новой точке производят измерение приращения температуры. При подтверждении внутриопухолевого расположения бета-детектора (v≅ порогового значения, определенного экспериментально) производят измерение с как указано выше в противном случае бета-детектор перемещают в третью точку, где также измеряется v, в случае, если v ≅ порового значения, данная точка считается соответствующей внутриопухолевому расположению бета-детектора, и здесь производят изменение с, как указано выше.

Наконец, если во всех трех точках приращение температуры превышает пороговое значение, измерение с производится в той из исследованных точек, где v имеет минимальное значение.

Далее вычисляют относительное накопление радионуклида в опухоли (ОНРОп) в процентах по формуле:
ОНРОп = a, b, c - средние арифметические показаний Бета-детектора при предыдущих операциях.

Размещение термочувствительного датчика внутри игловидного корпуса в области расположения бета-датчика обеспечивает совпадение локализации бета-датчика и чувствительного к гипертермии опухоли термодатчика.

Термодатчик должен иметь тепловой контакт не с рабочим телом детектора, а со стенкой игловидного корпуса, выполненного из теплопроводного материала. Только при этом условии может быть обеспечена низкая тепловая инерционность при измерении температуры тканей, окружающих игловидный корпус.

Похожие патенты RU2017453C1

название год авторы номер документа
ДЕТЕКТОР РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1987
  • Андреев В.М.
  • Еремин В.К.
  • Строкан Н.Б.
SU1466485A3
ДЕТЕКТОР КОРОТКОПРОБЕЖНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1986
  • Вербицкая Е.М.
  • Еремин В.К.
  • Клячкин Л.Е.
  • Маляренко А.М.
  • Строкан Н.Б.
  • Суханов В.Л.
RU1371475C
ГАММА-СПЕКТРОМЕТРИЧЕСКАЯ УСТАНОВКА ДЛЯ ДИАГНОСТИКИ МОЛОЧНОЙ ЖЕЛЕЗЫ 2004
  • Богод Виталий Борисович
  • Березкин Виктор Викторович
  • Завелев Виталий Зиновьевич
  • Колосков Сергей Алексеевич
  • Кешелава Виктор Владимирович
  • Родионов Владислав Юрьевич
  • Тузикова Оксана Федоровна
  • Федоров Владимир Алексеевич
  • Щекин Константин Иванович
RU2285448C2
СПОСОБ РАННЕЙ ДИАГНОСТИКИ ОПУХОЛЕВЫХ ЗАБОЛЕВАНИЙ МОЛОЧНОЙ ЖЕЛЕЗЫ 2004
  • Белошенко Виктор Александрович
  • Варюхин Виктор Николаевич
  • Дорошев Валентин Давыдович
  • Карначев Александр Сергеевич
  • Приходченко Владимир Васильевич
  • Приходченко Олег Владимирович
RU2276965C2
УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ ВНУТРИТКАНЕВОЙ ЛАЗЕРНОЙ ГИПЕРТЕРМИИ И ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ИХ ОСУЩЕСТВЛЕНИЯ 2009
  • Курлов Владимир Николаевич
  • Лощенов Виктор Борисович
  • Савельева Татьяна Александровна
  • Соколов Виктор Викторович
  • Филинов Владимир Леонидович
  • Филоненко Елена Вячеславовна
  • Шевчик Сергей Александрович
  • Шикунова Ирина Алексеевна
  • Окушко Антон Николаевич
RU2424009C1
Способ неинвазивного дистанционного контроля температуры глубоко расположенных органов и тканей 2016
  • Полозов Сергей Маркович
  • Иванов Станислав Михайлович
  • Перельштейн Элкуно Аврумович
  • Фадеев Алексей Михайлович
RU2672379C1
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ С ПОМОЩЬЮ МАГНИТНОЙ ГИПЕРТЕРМИИ И ФАРМАЦЕВТИЧЕСКИЕ КОМПОЗИЦИИ ДЛЯ ПРИМЕНЕНИЯ В УКАЗАННОМ СПОСОБЕ 2016
  • Тишин Александр Метталинович
  • Пятаков Александр Павлович
  • Штиль Александр Альбертович
  • Гунько Юрий Кузьмич
  • Зверев Владимир Игоревич
  • Салахова Регина Таировна
  • Маркова Алина Александровна
RU2633918C9
ПОРТАТИВНОЕ РАДИОЧАСТОТНОЕ УСТРОЙСТВО ДЛЯ ГИПЕРТЕРМИИ С ГИБКИМ ТЕРАПЕВТИЧЕСКИМ ЭЛЕКТРОДОМ ДЛЯ ЕМКОСТНО-СВЯЗАННОГО ПЕРЕНОСА ЭНЕРГИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ 2009
  • Сас Андраш
  • Сас Оливер
  • Айлури Нора
RU2508136C2
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ С ПОМОЩЬЮ МАГНИТНОЙ ГИПЕРТЕРМИИ И КОМПОЗИЦИЯ ДЛЯ ПРИМЕНЕНИЯ В УКАЗАННОМ СПОСОБЕ 2020
  • Сухоруков Глеб Борисович
  • Пятаев Николай Анатольевич
  • Тишин Александр Метталинович
RU2792161C2
СПОСОБ КОНТРОЛЯ РАДИОАКТИВНОГО ОБЛУЧЕНИЯ ЧЕЛОВЕКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Новиков Игорь Кимович
  • Семенов Юрий Викторович
RU2112993C1

Реферат патента 1994 года ДИАГНОСТИЧЕСКОЕ УСТРОЙСТВО

Диагностическое устройство. Использование: в медицинской технике для исследования злокачественных опухолей. Сущность изобретения: устройство содержит игловидный корпус из теплопроводного материала, в полости которого размещены полупроводниковый датчик бета - частиц и термодатчик, находящийся в тепловом контакте с корпусом. Датчик бета - частиц подключен к регистратору, термодатчик - к электронному индикатору температуры и ее приращения. Термодатчик может быть выполнен бусинкового типа, а индикатор - в виде цифрового вольтметра. 2 з.п.ф-лы, 1 ил.

Формула изобретения RU 2 017 453 C1

1. ДИАГНОСТИЧЕСКОЕ УСТРОЙСТВО, содержащее корпус игловидной формы, во внутренней герметизированной полости которого установлен полупроводниковый датчик бета-частиц, соединенный с регистратором, отличающееся тем, что оно снабжено термочувствительным датчиком, размещенным в полости игловидного корпуса, выполненного из теплопроводного материала, в тепловом контакте с ним и соединенным с введеннным в устройство электронным индикатором температуры и ее приращения. 2. Устройство по п.1, отличающееся тем, что термодатчик выполнен полупроводниковым бусинкового типа. 3. Устройство по пп.1 и 2, отличающееся тем, что электронный индикатор температуры и ее приращения выполнен в виде цифрового вольтметра.

Документы, цитированные в отчете о поиске Патент 1994 года RU2017453C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Афанасьева Н.П., Еремин В.К., Строкан Н.Б., Тархин Д.В
Полупроводниковые детекторы для внутриполостной и внутритканевой радиофосфорной диагностики рака, Медицинская радиология, 1983, N 9, 62-64.

RU 2 017 453 C1

Авторы

Еремин В.К.

Строкан Н.Б.

Тархин Д.В.

Портной С.М.

Даты

1994-08-15Публикация

1993-04-14Подача