Изобретение относится к электронной технике, в частности к конструкции электронно-оптических преобразователей (ЭОП) для усиления яркости, изображения или преобразования изображения инфракрасных, ультрафиолетовых или рентгеновских лучей в видимое изображение.
Известны электронно-оптические преобразователи, в которых используются порошковые катодолюминесцентные экраны на основе цинк-кадмиевых сульфидных люминофоров и микроканальные пластины (МКП), используемые для усиления яркости [1].
Целью изобретения является предотвращение разрушения катодолюминесцентного экрана в результате электрического высоковольтного пробоя при высоких напряженностях поля между экраном МКП в преобразовательных приборах.
Цель достигается тем, что в электронно-оптическом преобразователе, содержащем фотокатод, микроканальную пластину и светоизлучающий алюминированный катодолюминесцирующий экран, светоизлучающий экран выполнен в виде пластины из монокристаллического алюмоиттриевого граната толщиной 1 ± 0,1 мм, плоскость которой параллельна кристаллографической плоскости (III) с точностью ± 15 и перпендикулярна оптической оси, соединяющей центры плоскостей фотокатода, микроканальной пластины и светоизлучающего экрана, причем расстояние между плоскостями экрана и микроканальной пластиной составляет 0,1-0,2 толщины светоизлучающей пластины.
Конструкция плоского ЭОП с микроканальным усилением представлена на чертеже.
Электронно-оптический преобразователь содержит фотокатод 1, микроканальную пластину (МКП) 2, светоизлучающий люминесцентный экран 3, выполненный из монокристаллической пластины алюмоиттриевого граната, зеркальную отражающую пленку 4 алюминия, стеклянный баллон 5.
Плоский электронно-оптический преобразователь работает следующим образом. Фотоэлектроны с фотокатода 1, попадая внутрь канала МКП 2, ударяются о его стенки, вызывая эмиссию вторичных электронов. Вторичные электроны, увлекаясь полем внутри каждого канала, совершают по мере прохождения многократные акты вторичной эмиссии, в результате чего ток на выходе канала превышает ток на входе в 40000 раз. С выхода МКП 2 изображение в ускоряющем поле переносится на монокристаллический экран 3. Для получения достаточной яркости свечения экрана напряженность поля в выходной секции переноса изображения может быть увеличена до 10 кВ и более без повреждения экрана.
Конкретные примеры плоского электронно-оптического преобразователя приведены в таблице.
Высокие яркость изображения и разрешающая способность ЭОП могут быть получены при толщине наклона 90o ±15. ЭОП с монокристаллическими экранами на основе алюмоиттриевого граната излучают в желто-зеленой области (длина волны спектрального максимума излучения 544 нм), имеют светоотдачу более 5 кд/Вт (при U = 5 кВ) и длительность послесвечения τe≅3 . 10-3 С. Экраны не выгорают под действием электронного пучка и не разрушаются при высоких напряженностях поля между МКП и экранным узлом. Спектральный максимум излучения выходного экрана ЭОП с монокристаллическим экраном удовлетворяет требованиям сумеречно адаптированного глаза наблюдателя (в условиях невысокой внешней освещенности спектральный максимум глаза наблюдателя смещается от λ= 550 нм до λ = 525 нм).
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ НАБЛЮДЕНИЯ В ВИДИМОЙ И ИНФРАКРАСНОЙ ОБЛАСТЯХ СПЕКТРА | 1997 |
|
RU2148849C1 |
ЭЛЕКТРОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2000 |
|
RU2187169C2 |
ВАКУУМНЫЙ ЭМИССИОННЫЙ ПРИЕМНИК ИЗОБРАЖЕНИЙ УЛЬТРАФИОЛЕТОВОГО ДИАПАЗОНА | 2020 |
|
RU2738767C1 |
УСТРОЙСТВО РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ В ШИРОКОМ ДИАПАЗОНЕ ОСВЕЩЕННОСТИ | 2013 |
|
RU2535299C1 |
ОДНОКАНАЛЬНЫЙ ДВУХСПЕКТРАЛЬНЫЙ ПРИЕМНИК ИЗОБРАЖЕНИЙ ОБЪЕКТОВ, ИЗЛУЧАЮЩИХ В УЛЬТРАФИОЛЕТОВОМ ДИАПАЗОНЕ | 2022 |
|
RU2792809C1 |
ОДНОКАНАЛЬНЫЙ ДВУХСПЕКТРАЛЬНЫЙ ПРИЕМНИК ИЗОБРАЖЕНИЙ, ВЫПОЛНЕННЫЙ В АРХИТЕКТУРЕ ЭЛЕКТРОННО-ОПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ | 2022 |
|
RU2818985C1 |
ЭЛЕКТРОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 1996 |
|
RU2094897C1 |
КОМБИНИРОВАННЫЙ ЭЛЕКТРОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2015 |
|
RU2593648C1 |
ФОТОПРИЕМНОЕ УСТРОЙСТВО | 2006 |
|
RU2330348C2 |
РЕНТГЕНОВСКИЙ ВИЗУАЛИЗАТОР | 2016 |
|
RU2660947C2 |
Использование: электронная техника, электронно-оптические преобразователи (ЭОП) для усиления яркости или преобразования изображения в инфракрасных, ультрафиолетовых или рентгеновских лучах в видимое. Сущность изобретения: ЭОП включает фотокатод, микроканальную пластину и алюминированный светоизлучающий катодолюминесцентный экран (Э). Э выполнен из монокристаллической пластины алюмоиттриевого граната толщиной 1 ± 0,1 мм, плоскость которой параллельна кристаллографической плоскости (111) с точностью ± 15′ , а расстояние между микроканальной пластиной и Э составляет 0,1 - 0,2 толщины пластины из монокристаллического алюмоиттриевого граната. 1 ил, 1 табл.
ПЛОСКИЙ ЭЛЕКТРОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ, содержащий фотокатод, микроканальную пластину и светоизлучающий катодолюминесцентный экран с алюминиевым покрытием со стороны фотокатода, отличающийся тем, что, с целью повышения электрической прочности при высоких светотехнических параметрах, светоизлучающий катодолюминисцентный экран выполнен в виде пластины из монокристаллического алюмоиттриевого граната толщиной 1 ± 0,1 мм, плоскость которой параллельна кристаллографической плоскости (III) с точностью ± 151 и перпендикулярна оптической оси, соединяющей центры плоскостей фотокатода, микроканальной пластины и светоизлучающего катодолюминесцентного экрана, при этом расстояние между светоизлучающим люминесцентным экраном и микроканальной пластиной составляет 0,1 - 0,2 толщины пластины из монокристаллического алюмоиттриевого граната.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Берковский А.Г | |||
и др | |||
Вакуумные фотоэлектронные приборы | |||
М.: Энергия, 1976, с.284-288. |
Авторы
Даты
1994-09-30—Публикация
1990-05-29—Подача