УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ХАРАКТЕРИСТИК ЭЛЕКТРОМАГНИТНЫХ ИМПУЛЬСОВ Российский патент 1994 года по МПК G02F1/01 

Описание патента на изобретение RU2022307C1

Изобретение относится к технике управления оптическим излучением и может быть использовано при проведений измерений параметров электромагнитного поля.

Известно устройство для контроля параметров импульсных и импульсно-модулированных электрических сигналов, содержащее призменный дефлектор, источник электрических импульсов, источник лазерного излучения и ФЭУ.

Известно также устройство для измерения амплитудно-временных параметров на основе электрооптического эффекта. Схема содержит электрооптический амплитудный модулятор, источник электрических импульсов, лазер и ФЭУ.

Недостатками известных устройств являются, во-первых, их частотная ограниченность (fгр≈ 1-3 Ггц) и, во-вторых, полное отсутствие частотной избирательности, т. е. неприменимость подобных схем при работе в условиях интенсивных фоновых сигналов.

Наиболее близким к изобретению по технической сущности является устройство для сканирования светового луча в зависимости от приложенного электрического поля, содержащее дефлектор на сдвоенных призмах из кристалла КДР, источник электрических импульсов, лазер и блок фотодетекторов.

Устройство под действием приложенного электрического поля изменяет угол отклонения лазерного луча на величину θ=n30

r63Ez. Это позволяет по величине угла отклонения отслеживать изменение электрического поля.

Недостатком известного устройства является узость его эксплуатационных возможностей. Это, во-первых, его частотная ограниченность, а именно fгр <3 ГГц, обусловленная тем, что из-за сравнимости скоростей света и скорости распространения электрического импульса при увеличении частоты в кристалле возникает сложная картина распределения электрического поля. Причем практически невозможно определить форму электрического импульса, так как по ходу луча происходит его многократная модуляция. Во-вторых, подобная схема не обладает частотной избирательностью и, таким образом, не применима в условиях, когда фоновые сигналы отличной от измеряемой частоты по интенсивности сравнимы или превосходят полезный сигнал.

Кроме того, данная схема требует определенной коммутации с металлическими контактами, которые также ограничивают полосу частот и чувствительны к фоновым наводкам.

Целью изобретения является расширение частотного диапазона устройства для регистрации характеристик электромагнитных импульсов.

Цель достигается за счет того, что в устройстве для регистрации характеристик электромагнитных импульсов, содержащем блок фотодетекторов, источник лазерного излучения и призменный электрооптический дефлектор, последний выполнен в виде призмы с первой входной гранью, второй гранью, оптически связанной с источником лазерного излучения, нормальной к оптической оси дефлектора и источника и расположенной под углом (π/2-α) к входной грани, причем α=arcsin(n/),где n - показатель преломления материала дефлектора;
ε - диэлектрическая проницаемость материала дефлектора, и выходной гранью, параллельной второй грани и оптически связанной с блоком фотодетекторов.

На фиг. 1 представлена блок-схема устройства для регистрации характеристик электромагнитных импульсов, которое содержит источник когерентного излучения 1, электрооптический дефлектор в виде призмы 2 с входной гранью 3 и оптической осью, проходящей через противолежащие грани 4, выполненные под углом (π/2-α) к входной грани 3, блок фотодетекторов 5.

На фиг. 2 показан принцип работы дефлектора, где d - диаметр светового луча; L - длина оптической оси кристалла; θ - угол сканирования; - напряженность электрического поля; - градиент напряженности поля по оси ОX; - направление распространения электрического импульса.

Устройство работает следующим образом. Лазерный луч при прохождении через кристалл 2, в котором бегущая электромагнитная волна создает градиент показателя преломления, испытывает неравномерное по поперечному сечению преломление. В результате на выходе из кристалла 4 отмодулированный световой пучок приобретает дополнительное угловое распределение, вызванное неодинаковостью скоростей распространения света для составляющих частей светового пучка, движущихся в оптической среде с переменным показателем преломления. В этом случае ось луча сканируется на угол θ=n30

r63Ez , где no - показатель преломления в направлении, перпендикулярном оптической оси;
r63 - электрооптический коэффициент кристалла;
Ez - напряженность поля оптической оси;
L - длина оптической оси дефлектора,
D - диаметр светового луча.

Требуемая синхронизация достигается выбором угла α , так чтобы скорость света в направлении оси OZ была равна скорости распространения постоянной фазы электромагнитного поля по той же оси. Поскольку скорость света по оси ОZ
v1= c/no, где no - показатель преломления, а скорость распространения постоянной фазы по оси О V2= где ε - диэлектрическая проницаемость дефлектора, то из условия v1= v2получают α=arcsin(n/).

В этом случае имеет место фазировка скорости распространения светового луча и фазы электромагнитного поля. Поэтому световой пучок движется в кристалле в постоянном для него электрическом поле.

Поскольку время релаксации кристаллической решетки дефлектора составляет 10-13 с, то для электрических импульсов с длительностями до 10-12 с в дефлекторе успевает установиться соответствующее электрическое поле, т. е. для электрических импульсов до 10-12 с инерционностью кристаллической решетки не существенна.

С выхода дефлектора сканированный световой пучок попадает на волоконно-оптическую делительную матрицу и далее регистрируется на фотодетекторах. Интенсивность, прошедшая в определенный угловой интервал, отслеживается фотоэлектронными усилителями, а угол отклонения - их расположением. Таким образом, по углу отклонения определяется амплитуда поля по формуле.

E= [1/(no3r63L/D)] * θ и время отклонения на данный угол τ= где I - мощность лазера;
Σ - энергия, зарегистрированная ФЭУ.

Расчеты показали, что, например, для кристалла типа КДР при частотах f ≈10 Ггц, напряженности поля 104 В/см угол θ превосходит угол дифракционной расходимости β = в N≃ 2-3 раза (λ - длина волны лазерного луча).

При той же частоте и напряженности поля, но кристалле типа LiNbO3число N ≃ 8-10. При использовании кристаллов типа KTN величина N достигает значений N ≃ 30-40.

Использование изобретения позволяет расширить частотный диапазон устройства для регистрации характеристик электромагнитных импульсов. С помощью предложенного устройства появляется возможность проводить измерения характеристик импульсных и импульсно-модулированных электрических сигналов при длительности импульсов до 10-12 с; добиться высокой частотной селективности, регулируя лишь диаметр светового луча; диафрагмируя отклоненный световой пучок, получать сверхкороткие световые импульсы (до 10-12 с); работать в условиях активных электромагнитных наводок, сравнимых по амплитуде с измеряемым сигналом.

Похожие патенты RU2022307C1

название год авторы номер документа
ПЕРЕСТРАИВАЕМЫЙ ЛАЗЕР 1992
  • Кондратюк Николай Витальевич
  • Таранов Виктор Васильевич
RU2119705C1
СПОСОБ РАСПРЕДЕЛЕНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И МНОГОЛУЧЕВАЯ ЛАЗЕРНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Давыдов Борис Леонидович
  • Самарцев Игорь Эдуардович
RU2563908C1
Система импульсной лазерной локации 2015
  • Грязнов Николай Анатольевич
  • Купренюк Виктор Иванович
  • Романов Николай Анатольевич
  • Соснов Евгений Николаевич
RU2612874C1
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР, УПРАВЛЯЕМЫЙ ЭЛЕКТРИЧЕСКИМ ПОЛЕМ, И СПОСОБ ПЕРЕКЛЮЧЕНИЯ ЧАСТОТЫ ТВЕРДОТЕЛЬНОГО ЛАЗЕРА 2009
  • Уманский Борис Александрович
  • Баленко Валерий Геннадьевич
  • Труфанов Анатолий Николаевич
  • Долотов Сергей Михайлович
  • Петухов Владимир Андреевич
RU2410809C1
СПОСОБ ГЕНЕРАЦИИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ 2013
  • Образцов Петр Александрович
  • Чижов Павел Алексеевич
  • Гарнов Сергей Владимирович
RU2539678C2
ЛАЗЕР С ПЕРЕСТРАИВАЕМЫМ СПЕКТРОМ ИЗЛУЧЕНИЯ 2009
  • Королев Валерий Иванович
  • Меснянкин Евгений Петрович
  • Стариков Анатолий Демьянович
RU2399129C1
АКУСТООПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ РАДИОСИГНАЛОВ С ПОВЫШЕННЫМ РАЗРЕШЕНИЕМ 2014
  • Шибаев Станислав Сергеевич
  • Волик Денис Петрович
  • Помазанов Александр Васильевич
RU2584182C1
Акустооптический фильтр без радиочастотного сдвига отфильтрованного излучения и лазерные устройства с его применением 2020
  • Епихин Вячеслав Михайлович
  • Давыдов Борис Леонидович
RU2759420C1
Устройство для слежения за информационной дорожкой в системе воспроизведения информации с оптического диска 1985
  • Митрофанов Владимир Викторович
  • Могутов Анатолий Константинович
SU1278948A1
ЭЛЕКТРООПТИЧЕСКИЙ МОДУЛЯТОР ОПТИЧЕСКОГОИЗЛУЧЕНИЯВОЕООЮЗНАЯ 1972
  • В. С. Ильин А. И. Смирнов
SU338965A1

Иллюстрации к изобретению RU 2 022 307 C1

Реферат патента 1994 года УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ХАРАКТЕРИСТИК ЭЛЕКТРОМАГНИТНЫХ ИМПУЛЬСОВ

Изобретение относится к технике управления оптическим излучением и может быть использовано для регистрации параметров электромагнитного поля. Электрооптический дефлектор, оптически связанный с источником лазерного излучения и блоком фотодетекторов, выполнен в виде призмы, первая входная грань которой нормальна направлению распространения электромагнитных импульсов, вторая входная грань нормальна оптической оси дефлектора и источника и расположена под углом (π/2-α), причем α = arcsin , где ε - соответственно показатель преломления и диэлектрическая проницаемость материала дефлектора. 2 ил.

Формула изобретения RU 2 022 307 C1

УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ХАРАКТЕРИСТИК ЭЛЕКТРОМАГНИТНЫХ ИМПУЛЬСОВ, содержащее блок фотодетекторов, источник лазерного излучения и призменный электрооптический дефлектор, отличающийся тем, что, с целью расширения частотного диапазона, электрооптический дефлектор выполнен в виде призмы с первой входной гранью, второй гранью, оптически связанной с источником лазерного излучения, нормальной к оптической оси дефлектора и источника и расположенной под углом π / 2 - α к входной грани, причем α=arcsin(n/) где n - показатель преломления материала дефлектора; ε - диэлектрическая проницаемость материала дефлектора, и выходной гранью, параллельной второй грани и оптически связанной с блоком фотодетекторов.

Документы, цитированные в отчете о поиске Патент 1994 года RU2022307C1

Ярив А
Оптические волны в кристаллах
М.: Мир, 1987.

RU 2 022 307 C1

Авторы

Мялицын Л.А.

Петров В.В.

Даты

1994-10-30Публикация

1989-01-18Подача