Изобретение относится к электромашиностроению, в частности к узлам электрических машин, явновыраженным полюсам с жидкостным охлаждением.
Известна конструкция явновыраженного полюса с жидкостным охлаждением, в которой трубчатые охладители, изготовленные из коррозионностойкого немагнитного материала, встроены в среднее сечение сердечника полюса и по ним циркулирует охлаждающая вода - дистиллят. Обмотка возбуждения выполнена из полых проводников, по которым циркулирует охлаждающая жидкость - дистиллированная вода (авт. св. СССР N 400240, кл. Н 02 К, 1976).
Недостатки конструкции следующие. Выполнение трубчатых элементов немагнитными повышает магнитную индукцию в сечениях сердечника полюса, что увеличивает несколько ток возбуждения и потери и мощность возбуждения. Применение встроенных трубчатых охладителей внутри сердечника полюса при достаточно эффективном теплосъеме с активных поверхностей, требующем при удаленности от основных источников потерь на поверхности полюсов и в демпферной системе больших гидравлических диаметров, значительно ослабляет рабочее сечение сердечника полюса и создает концентрации напряжений при разгонном числе оборотов. Удаленность охладителей от источников потерь в полюсном башмаке снижает эффективность охлаждения и повышает температуру активных элементов полюсного башмака на 10-15оС. Использование для охлаждения дистиллята удорожает эксплуатацию машины.
Известна конструкция явновыраженного полюса, в котором обмотка возбуждения с жидкостным охлаждением закреплена на полюсном сердечнике с помощью стальной шайбы, приваренной к сердечнику полюса по контактным поверхностям (Электросила N 34, с. 78, рис. 1; "Капсульные гидрогенераторы ГЭС "Джен-Пег").
Известна конструкция полюса синхронной машины, в котором для охлаждения поверхности полюсов и демпферных стержней используется охладительный элемент, размещенный под заплечиками полюсных башмаков, по которому циркулирует жидкий хладагент, отводящий потери (швейцарский патент в США N 3633054, кл. Н 02 К, 1972).
Недостатки конструкции следующие. Охлаждаются только полюсные башмаки и демпферная обмотка с достаточной эффективностью. Установка охладителей под полюсные башмаки снижает коэффициент заполнения высоты полюсов проводниковым материалом.
Прототипом изобретения выбрана конструкция полюса с продольными встроенными в полюс охладителями сердечника и охладителями полюсных башмаков.
Целью изобретения является повышение надежности и КПД синхронной машины путем выполнения встроенных охладителей в сердечниках полюсов в пазах, расположенных по периметру сердечника и полюсных башмаков, повышение КПД синхронной машины и снижение эксплуатационных расходов за счет увеличения коэффициента использования межполюсного пространства путем исключения каналов в проводниках катушек возбуждения и охлаждения за счет теплопередачи к охладителям полюса через заливаемую корпусную диэлектрическую массу в промежутки между сердечниками и катушками, повышение КПД синхронной машины за счет снижения потерь и мощности возбуждения путем использования для охлаждения технической воды, а также за счет уменьшения потерь на возбуждение путем охлаждения сердечников полюсов с помощью ферромагнитной жидкости.
На фиг.1 представлен явновыраженный полюс 1, состоящий из сердечника 2 и полюсного башмака 3, в пазы которого уложены демпферные стержни 4, изолированные диэлектриком 5. Шихтованный полюс 1 стянут шпильками 6, 7 и нажимными щеками 21 (на фиг.3). У сердечников 2 выполнен, например, хвостовик 8 для крепления к ободу. На сердечники 2 надеты катушки 9 возбуждения, состоящие из проводников 10 в собственной изоляции 11, которые расположены в столбик и изолированы от башмаков диэлектрической шайбой 12, а от обода диэлектрической шайбой 13, зафиксированной на сердечнике 2 немагнитной шайбой 14, приваренной к сердечнику 2 швами 27 (на фиг.2). Корпусная диэлектрическая изоляция 15 заливается через отверстия 16 в шайбе 14 и, полимеризуясь, надежно изолирует катушку 9 от сердечника 2, в пазах которого по высоте размещены трубчатые коррозионно-стойкие элементы 17, являющиеся охладителями сердечника и обмотки 9 возбуждения. В заплечиках башмаков 3 в пазах расположены трубчатые элементы 18, а по боковым граням башмаков 3 расположены трубчатые элементы 19, причем как охладители 18, так и охладители 19 могут быть выполнены из коррозионно-стойкого металла, но немагнитного. Охладители 17, 18 и 19 заварены в своих пазах швами 20.
На фиг. 2 представлен вид А на сердечник 2 и шайбу 14, которая к нему приварена швами 27.
На фиг.3 представлен вид Б на сердечник 2 и нажимные щеки 21. Водоподводящая арматура 23 и 24 расположена по внешней поверхности щеки 21 в пространстве между ферромагнитной стенкой 22 и щекой 21, причем пустоты между арматурой 23 и 24 заполнены магнитодиэлектрической массой 28.
На фиг. 4 представлена гидравлическая схема соединений охладителей 17, 18 и 19, потоки жидкого хладагента в которых подводятся к охладителям 17, 18 и 19 через напорную 25 и сливную 26 камеры и таким образом, что в соседних по периметру охладителях хладагент течет во взаимно противоположные стороны, выравнивая этим температуру поверхности элементов полюса 1: сердечника 2 и башмака 3.
Конструкция охлаждения явновыраженного полюса 1 работает следующим образом.
Жидкий хладагент - техническая вода или проточная вода - поступает через напорную камеру 25 в охладители 17, 18, 19 и, протекая по ним, снимает тепловые потери из катушки 9 возбуждения, причем тепло проходит через корпусную диэлектрическую изоляцию 15, создавая на ней перепад температуры 30-40оС при удельной тепловой нагрузке 0,75-1 Вт/см на каждый 1 мм изоляции. При входящей температуре охлаждающей воды 5-20оС температура обмотки возбуждения может составлять 45-50оС, но в отличие от непосредственного охлаждения температура по длине витка и высоте полюса 1 распределяется равномерно без аксиального перепада, свойственного непосредственному охлаждению. Шайба 14 фиксирует катушку 9 относительно сердечника 2 и этим обеспечивается хороший теплопередающий контакт между катушкой 9 и сердечником 2, достигнутый при заливке полимеризующегося диэлектрика 15. Поскольку охладители 17 выполнены из магнитной коррозионно-стойкой стали, например, 20Х13, то это снижает индукцию в сечениях охладителей 17 по сравнению с прототипом. При протекании ферромагнитной жидкости по охладителям 17, 18 и 19 увеличения индукции в сечениях нет. При водяном охлаждении охладители 18 и 19, расположенные по периметру полюсного башмака 3, могут изготавливаться из коррозионно-стойкой немагнитной стали, например, 12ХН8Н10Т, при этом поток рассеяния несколько уменьшается. Охладители 18 и 19 отводят тепловые потери с поверхности полюсов и из демпферных стержней 4, особенно из наиболее нагретых крайних. Жидкий хладагент из обратных контуров охладителей 17, 18 и 19 сливается в камеру 26 и из нее в сливной коллектор. Для выравнивания аксиально-радиального перепада температуры направление движение хладагента в соседних охладителях 17, 18 и 19 имеет встречное направление. В торцовых частях полюса 1 охладители, размещенные по внешней поверхности щек 21, контактируют с лобовыми частями катушки 9 через ферромагнитную стенку 22 из тонколистового материала и изоляцию 15, обеспечивая теплоотвод потерь из лобовых частей катушки 9.
Преимущества изобретения по сравнению с прототипом следующие. Применение охладителей, расположенных по периметру полюса, в зоне контакта с обмоткой возбуждения позволяет избежать резких концентраторов магнитных и механических напряжений в сердечнике полюса, что позволяет на 3-5% уменьшить потери на возбуждение и повысить конструкционный запас прочности, а это повышает КПД и надежность машины. Применение охладителей, расположенных по периметру сердечника и башмака полюса, в сочетании с литой диэлектрической корпусной изоляцией катушки и с фиксацией катушки шайбой позволяет отказаться от непосредственного дистиллятного охлаждения обмотки возбуждения, которое приводит к высоким эксплуатационным расходам при обеспечении тех же температур в катушке возбуждения. Например, для генератора 45 МВт при потерях возбуждения на полюс р = 0,51 кВт и удельной тепловой нагрузке через изоляцию Φ = 0,3 Вт/см температура катушки при входящей температуре жидкости Тж = 5оС равна Тк = 17оС, а при Тж = 20оС Тк = 32оС. При непосредственном дистиллятном охлаждении эта температура равна 50оС, т.е. реальные потери могут быть уменьшены в обмотке возбуждения на 11,5 и 6,3 л% за счет снижения температуры и за счет более эффективного заполнения межполюсного пространства потери могут быть уменьшены в 1,55 раза, что позволяет увеличить КПД генератора на 0,03% за счет лучшего заполнения и на 0,01-0,005%. Но более эффективен вариант повышения мощности на 15-20%. Применение охладителей сердечника полюса из ферромагнитной коррозионно-стойкой стали позволяет уменьшить концентрацию магнитного потока и этим снизить потери на возбуждение, что повышает КПД электрической машины. Применение для охлаждения ферромагнитной жидкости позволяет практически на 100% использовать сечение под гидравлические каналы для проведения магнитного потока, что уменьшает потери на возбуждение и повышает КПД электрической машины. Применение пар теплогидравлических контуров со встречным течением жидкого хладагента позволяет выровнять аксиально-радиальный перепад температуры и этим повысить надежность конструкции косвенного охлаждения обмотки возбуждения.
Сущностью изобретения, достигающего поставленные цели, являются применение трубчатых охладителей полюса, размещенных в пазах по периметру сердечника полюса и полюсного башмака, охлаждающих полюсный башмак и обмотку возбуждения через корпусную изоляцию, применение для охлаждения полюса технической или проточной воды, применение для охлаждения сердечника полюса и полюсных башмаков ферромагнитной жидкости.
Изобретение может быть использовано в синхронных явнополюсных машинах: генераторах, двигателях, компенсаторах и, в частности, в капсульных гидрогенераторах, а также в машинах постоянного тока.
название | год | авторы | номер документа |
---|---|---|---|
РОТОР СИНХРОННОЙ ЯВНОПОЛЮСНОЙ МАШИНЫ С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ | 1990 |
|
RU2046499C1 |
РОТОР СИНХРОННОЙ ЯВНОПОЛЮСНОЙ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ | 1990 |
|
RU2046497C1 |
ИНДУКТОР ЯВНОПОЛЮСНОГО МАГНИТОПРОВОДА | 1990 |
|
RU2024156C1 |
РОТОР НЕЯВНОПОЛЮСНОЙ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ | 1990 |
|
RU2054781C1 |
ИНДУКТОР ЯВНОПОЛЮСНОЙ СИНХРОННОЙ МАШИНЫ | 1991 |
|
RU2046507C1 |
ПРОВОДНИК ОБМОТКИ СТАТОРА С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ | 1990 |
|
RU2054782C1 |
Полюс электрической машины | 1990 |
|
SU1836777A3 |
ОБМОТКА ВОЗБУЖДЕНИЯ С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ | 1990 |
|
RU2024157C1 |
ИНДУКТОР НЕЯВНОПОЛЮСНОЙ СИНХРОННОЙ МАШИНЫ | 1991 |
|
RU2023340C1 |
МАГНИТНЫЙ КЛИН-ОХЛАДИТЕЛЬ | 1991 |
|
RU2026593C1 |
Использование: в электромашиностроении. Сущность изобретения: явновыраженный полюс 1 с жидкостным охлаждением содержит сердечник 2 и башмак 3 с уложенными в пазы демпферными стержнями 4 и катушкой 9 возбуждения со сплошными проводниками 10, изолированной от сердечника 2 литым диэлектриком 15 и зафиксированной шайбой 14. По периметру сердечника 2 в пазах размещены охладители 17 из ферромагнитной коррозионно-стойкой стали, а по периметру башмаков 3 в пазах размещены охладители 18 и 19 из ферромагнитной коррозионно-стойкой стали, по которым циркулирует жидкий хладагент: техническая вода, проточная вода или ферромагнитная жидкость. Охлаждения катушки 9 осуществляется через диэлектрик 15, а башмаков 3 и демпферных стержней 4 - через сталь полюса 1 охладителями 17, 18, 19, закрепленными в пазах сваркой 20. 3 з.п. ф-лы, 4 ил.
Патент США N 3633071, кл | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1994-12-30—Публикация
1991-10-30—Подача