Изобретение относится к радиоизмерительной технике и может быть использовано для измерения непрерывной СВЧ-мощности высокого уровня.
Известен калориметрический измеритель мощности с расширенным диапазоном измерений, содержащий амплитудно-импульсный модулятор, выполненный в виде механического затвора на диске с отверстиями, расположенного перед приемным преобразователем таким образом, чтобы исследуемые электромагнитные колебания проходили через отверстия в диске и поступали в окно приемного преобразователя. В режиме измерения большой мощности диск приводится во вращение электродвигателем, прерывая непрерывное излучение и преобразуя его в импульсное со скважностью
Q = , (1) где S - длина окружности диска, на которой располагаются отверстия;
d - ширина отверстий;
n - количество отверстий.
К недостаткам известного измерителя относятся высокая стоимость, связанная с необходимостью точной механической обработки затвора, большие габариты и масса, низкая надежность электромеханической системы.
Наиболее близким является измеритель непрерывной мощности СВЧ, содержащий генератор модулирующих импульсов, амплитудно-импульсной модулятор, калориметрический преобразователь, усилитель, электронный коммутатор, аналого-цифровой преобразователь, индикатор и калибратор.
Недостатки известного измерителя заключаются в узком диапазоне измерений.
Расширение диапазона измерений в предлагаемом измерителе достигается тем, что в известный измеритель непрерывной мощности СВЧ, содержащий последовательно соединенные амплитудно-импульсный модулятор, на первый вход которого подается измеряемый сигнал, измерительный инерционный преобразователь и усилитель, а также аналого-цифровой преобразователь, индикатор, генератор модулирующих импульсов, электронный коммутатор и калибратор, выход которого соединен с вторым входом измерительного преобразователя, дополнительно вводят вычислительно-логический блок. При этом выход усилителя соединяют с входом аналого-цифрового преобразователя, выход которого соединяют с входом вычислительно-логического блока, первый выход которого соединяют с входом индикатора, а второй выход - с входом генератора модулирующих импульсов, выход которого соединяют с вторым входом модулятора, причем генератор модулирующих импульсов выполнен на двух задающих генераторах прямоугольных импульсов, логического элемента И, электронного коммутатора и логического элемента ИЛИ, соединенных следующим образом: выход первого задающего генератора соединяют с первым входом логического элемента И и первым входом электронного коммутатора, выход второго задающего генератора соединяют с вторым входом логического элемента И и третьим входом электронного коммутатора, выход логического элемента И соединяют с вторым входом электронного коммутатора, первый, второй, третий выходы электронного коммутатора соединяют соответственно с первым, вторым, третьим входами логического элемента ИЛИ, выход которого соединяют с входом модулятора, а управляющий вход электронного коммутатора соединяют с вторым выходом вычислительно-логического блока. Сопоставительный анализ прототипа позволяет сделать вывод, что предлагаемый измеритель мощности непрерывных электромагнитных колебаний отличается тем, что в измеритель дополнительно введен вычислительно-логический блок, при этом выход усилителя соединен с входом аналого-цифрового преобразователя, выход которого соединен с входом вычислительно-логического блока, первый выход которого соединен с входом индикатора, а второй выход - с входом генератора модулирующих импульсов, выход которого соединен с вторым входом модулятора, а генератор модулирующих импульсов содержат два задающих генератора прямоугольных импульсов, логический элемент И, электронный коммутатор и логический элемент ИЛИ. Таким образом, изобретение соответствует критерию "новизна". Анализ известных технических решений в исследуемой области позволяет сделать вывод об отсутствии в них признаков, сходных с существенными отличительными признаками в предлагаемом измерителе и признать изобретение соответствующим критерию "существенное отличие".
На фиг. 1 приведена структурная схема измерителя; на фиг. 2 - эпюры сигналов, полученных в результате модуляции.
Измеритель содержит амплитудно-импульсный модулятор 1, измерительный инерционный преобразователь 2, усилитель 3, аналого-цифровой преобразователь (АЦП) 4, вычислительно-логический блок 5, индикатор 6, генератор 7 модулирующих импульсов и калибратор 8. Генератор модулирующих импульсов содержит два задающих генератора 9 и 10 прямоугольных импульсов, двухвходовую схему И 11, трехканальный электронный коммутатор 12 и трехвходовую схему ИЛИ 13.
Измеритель работает следующим образом.
Исследуемый сигнал через модулятор 1 подается на первый вход преобразователя 2, который вырабатывает постоянное напряжение, пропорциональное среднему значению мощности импульсно-модулированного сигнала, сформированного модулятором 1 и генератором 7. Это постоянное напряжение после усиления усилителем 3 преобразуется в цифровой код АЦП 4 и обрабатывается вычислительно-логическим блоком 5. Последний управляет процессом измерения и выдает информацию о результатах измерения на цифровой индикатор 6. Цикл измерения состоит из трех тактов. В первом такте по команде блока 5 открывается первый канал электронного коммутатора 12 и на второй вход модулятора 1 поступают прямоугольные импульсы длительностью τ1 и периодом Т1 от задающего генератора 9 через открытый канал электронного коммутатора 12 и первый вход схемы ИЛИ 13, а вычислительно-логический блок фиксирует результат измерения
P1 = , (2) где Q1 = - скважность импульсной последовательности в первом такте;
Рх - исследуемая мощность.
Во втором такте по команде блока 5 первый канал коммутатора 12 закрывается, а третий открывается, и на второй вход коммутатора 1 поступают прямоугольные импульсы длительностью τ2 и периодом Т2 от задающего генератора 10 через открытый канал коммутатора 12 и третий вход схемы ИЛИ 13. Вычислительно-логический блок фиксирует результат измерения
P2 = , (3) где Q2 = - скважность импульсной последовательности во втором такте.
В третьем такте закрывается третий и открывается второй канал коммутатора 12 и на второй вход модулятора 1 поступают пачки импульсов с выхода схемы И 11, полученные в результате перемножения двух импульсных последовательностей Т1, τ1 и Т2, τ2. Вычислительно-логический блок в этом случае фиксирует результат измерения
P3 = . (4)
Эпюры сигналов (фиг.2) поясняют работу измерителя в трех тактах, когда измеряются средние значения импульсно-модулированных сигналов Р1, Р2, Р3.
В четвертом такте блок 5 производит вычисление измеряемой мощности Рх по формуле
Px=P (5)
Выражение (5) является решением (2), (3), (4) относительно Рх.
Из (5) видно, что измеренное значение Рх не зависит от параметров импульсной модуляции, а определяется лишь результатами измерений Р1, Р2, Р3, произведенными одним и тем же измерителем, диапазон измерений которого расширен за счет увеличения верхнего предела измерения приблизительно в Q раз.
Экспериментальная проверка макета измерителя и его лабораторные испытания подтвердили достижения целей изобретения и улучшение характеристик предлагаемого измерителя.
Например, применяя в изобретении приемный термоэлектрический преобразователь типа М5-78 со следующими параметрами:
верхний предел преобразуемой средней мощности не более 10 мВт;
верхний предел преобразуемой импульсной мощности не более 1 Вт;
длительность импульса максимальной преобразуемой импульсной мощности не более 10 мкс;
коэффициент преобразования 1 мВ/мВт;
постоянная времени преобразователя 50 мс, можно реализовать верхний предел измерений непрерывной СВЧ-мощности значением в 1 Вт.
Действительно, для импульсной последовательности в первом такте с параметрами τ1 = 1,0 мкс; Т1 = 100 мкс; Q1 = = 100, во втором такте τ2 = 10 мкс; Т2 = 1000 мкс; Q2 = = 100 верхний предел измерения предлагаемого измерителя определяется из выражения
Рверх = Q˙Рср.доп = 100˙10 = 1000 мВт, где Q = 100;
Рср.доп. = 10 мВт - верхний предел преобразуемой средней мощности преобразователя.
Сравнение диапазонов измерения предлагаемого и известного измерителей можно произвести из выражений
U=Kпр·P1-e, (6)
U= Kпр·P, (7) где Uвых1, Uвых2 - напряжения на выходе преобразователя известного и предлагаемого измерителей соответственно;
Kпр=1 - коэффициент преобразования преобразователя;
Рх = 1000 мВт - максимальное значение исследуемой мощности;
τп = 10 мкс - длительность радиоимпульса на входе преобразователя;
τпр = 50 мс - постоянная времени преобразователя;
Q = Q1 = Q2 = 102 - скважность импульсных последовательностей.
В данном случае при τпр >> τи (6) можно записать как
U=Kпр·Px. (8)
Подставляя значения Кпр, Рх, τи, τпр, Q1, Q2 в (7), (8), получают
U=1·10 = 0,2 мВ,
U=1·10 = 0,1 мВ, т.е. из (7) и (8) видно, что при равенстве мощностей на входе преобразователя известного и предлагаемого измерителей уровни напряжений на выходе преобразователя обоих измерителей являются величинами одного порядка, но с той существенной разницей, что в известном измерителе носителем информации является одиночный импульс, а в предлагаемом - уровень постоянного напряжения. В связи с этим различаются требования к измерителям в части амплитудно-частотных характеристик (АЧХ). Для известного измерителя АЧХ должна иметь полосу пропускания, определяемую частотным спектром импульсного сигнала, т.е. Δf ≥ , которая при τо = 10 мкс составляет приблизительно 100 кГц. Для предлагаемого измерителя АЧХ может быть ограничена полосой пропускания, составляющей доли Гц.
В этом случае диапазон измерения известного и предлагаемого измерителей различен, так как, если с верхней стороны он определяется максимально допустимой мощностью, поглощаемой преобразователем, то с нижней стороны - уровнем шумов на входе измерительного тракта. Считая верхние пределы известного и предлагаемого измерителей равными, нижние пределы диапазона измерений известного и предлагаемого измерителей определяются уровнем шумов на входе измерительного тракта, который определяется из известного выражения:
Uш=, (9) где k - 1,38˙10-23 Дж/К - постоянная Больцмана;
Т = 293 К - абсолютная температура преобразователя;
R = 200 Ом - выходное сопротивление преобразователя;
Δ f, Гц - полоса пропускания измерительного тракта.
Для известного измерителя (при Δ f = 105 Гц)
U1ш= = 5,7·10-7 B.
Для предлагаемого измерителя (при Δ f =1 Гц)
U2ш= =1,8·10-9 B
Отношения напряжений полезного сигнала к шумам на входе измерительного тракта для известного и предлагаемого измерителей соответственно равны
= = 350,
= = 53000.
Таким образом, уровень помех на входе измерительного тракта предлагаемого измерителя приблизительно в = 150 раз ниже в сравнении с известным, что эквивалентно расширению диапазона измерений предлагаемого измерителя.
Преимущества предлагаемого измерителя перед прототипом заключается также в отсутствии импульсного калибратора, так как в предлагаемом измерителе отпадает необходимость калибровки постоянной времени измерительного преобразователя.
название | год | авторы | номер документа |
---|---|---|---|
Измеритель непрерывной мощностиСВЕРХВыСОКиХ чАСТОТ | 1979 |
|
SU849087A1 |
Измеритель амплитудно- и фазочастотной характеристики СВЧ-тракта | 1990 |
|
SU1721546A1 |
СИСТЕМА ОБНАРУЖЕНИЯ РАДИОЛОКАЦИОННЫХ СИГНАЛОВ | 2003 |
|
RU2256937C1 |
СВЧ-амплифазометр | 1986 |
|
SU1350627A1 |
Устройство для автоматической регистрации параметров жидких сред | 1990 |
|
SU1704061A1 |
Аппаратура акустического каротажа нефтяных и газовых скважин | 1980 |
|
SU898369A1 |
ПРЕОБРАЗОВАТЕЛЬ ИЗМЕНЕНИЯ СОПРОТИВЛЕНИЯ РЕЗИСТИВНЫХ ДАТЧИКОВ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ | 2005 |
|
RU2292051C2 |
Устройство для аттестации импульсных ваттметров СВЧ | 1981 |
|
SU1128183A1 |
СИСТЕМА ОБНАРУЖЕНИЯ УГНАННОГО ТРАНСПОРТНОГО СРЕДСТВА | 1991 |
|
RU2078701C1 |
Цифровой измеритель электрической энергии | 1990 |
|
SU1749842A1 |
Изобретение относится к радиоизмерительной технике и может быть использовано для измерения непрерывной СВЧ-мощности высокого уровня. Сущность изобретения: измеритель содержит амплитудно-импульсный модулятор 1, измерительный инерционный преобразователь 2, усилитель 3, аналого-цифровой преобразователь 4, вычислительно-логический блок 5, индикатор 6, генератор 7 модулирующих импульсов, калибратор 8, два задающих генератора 9, 10 прямоугольных импульсов, логические элементы И 9, ИЛИ 13 и электронный коммутатор 12. 2 ил.
ИЗМЕРИТЕЛЬ МОЩНОСТИ НЕПРЕРЫВНЫХ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ, содержащий последовательно соединенные амплитудно-импульсный модулятор, первый вход которого соединен с источником измеряемого сигнала, а второй - с выходом генератора модулирующих импульсов, измерительный инерционный преобразователь и усилитель, содержащий также аналого-цифровой преобразователь, индикатор и калибратор, отличающийся тем, что в измеритель дополнительно введен вычислительно-логический блок, при этом выход усилителя соединен с входом аналого-цифрового преобразователя, выход которого соединен с входом вычислительно-логического блока, первый выход которого соединен с входом индикатора, а второй - с входом генератора модулирующих импульсов, причем генератор модулирующих импульсов выполнен на двух задающих генераторах прямоугольных импульсов, логической схемы И, электронного коммутатора и логической схемы ИЛИ, причем выход первого задающего генератора соединен с первым входом логической схемы И и первым входом электронного коммутатора, выход второго задающего генератора соединен с вторым входом указанной схемы и третьим входом электронного коммутатора, первый, второй и третий выходы которого соединены соответственно с первым, вторым и третьим входами логической схемы ИЛИ, выход которой соединен с входом амплитудно-импульсного модулятора, второй вход логической схемы И соединен с вторым входом электронного коммутатора, управляющий вход которого соединен с вторым выходом вычислительно-логического блока, а выход калибратора - с вторым входом измерительного инерционного преобразователя.
Измеритель непрерывной мощностиСВЕРХВыСОКиХ чАСТОТ | 1979 |
|
SU849087A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1995-02-27—Публикация
1991-12-28—Подача