Изобретение относится к измерительной технике и может быть использовано для точных измерений реактивных сил и крутящих моментов авиационных двигателей, преимущественно ТВД и ТВВД, при испытании на станке и в полете.
На силоизмерительных устройствах, которые применяются на испытательных станциях, двигатель прикреплен к динамометрической платформе, подвешенной к опорным стойкам на упругих лентах или шатунах. Вектор тяги двигателя и вектор силы, действующий на датчик силоизмерительного устройства (СИУ), находятся в различных горизонтальных плоскостях, расстояние между которыми достигает значительных размеров. Так для двигателей с тягой 100-120 кН это расстояние достигает 2 м. Эти станки имеют погрешность порядка 0,5% и ряд эксплуатационных недостатков, вызванный различными факторами [1].
Известен датчик силоизмерительного устройства, ближайший по технической сущности к предлагаемому и принятый за прототип [2], в котором упругий элемент выполнен в виде полого цилиндра с буртом, который снабжен тензорезисторным элементом. Работа тензорезисторного силоизмерителя основана на преобразовании деформации изгиба упругого элемента в электрический сигнал, пропорциональный измеряемой нагрузке. Тензорезисторы собираются по схеме электрического моста. Такой датчик предназначен для измерения силы, вектор которой строго совпадает с его осью.
Недостатками прототипа являются низкая точность и эффективность из-за невозможности измерения силы тяги в полете.
Целью изобретения является повышение точности и эффективности за счет возможности измерения силы тяги в полете, а также расширение функциональных возможностей за счет измерения крутящего момента.
Это достигается тем, что в датчике для силоизмерительного устройства, содержащем размещенные на упругом элементе тензорезисторы, включенные в схему электрического моста, упругий элемент выполнен в виде усеченного полого конуса с фланцем у основания и ступицей при вершине, диаметры усеченного конуса связаны между собой соотношением
D
tg = tg где D1 и D2 - диаметры внутренней и наружной поверхностей большего основания усеченного полого конуса;
d1 и d2 - диаметры внутренней и наружной поверхностей малого основания усеченного полого конуса;
α1 и α2 - углы при вершинах конусов внутренней и наружной поверхностей,
l1 и l2 - расстояния от места приложения силы Р до кольцевых сечений конуса у ступицы и фланца соответственно,
при этом тензорезисторы закреплены по образующим внутренней поверхности конуса диаметрально противоположно относительно друг друга, а их оси расположены в одной плоскости с осью датчика и двигателя, ось которого перпендикулярна оси двигателя. Кроме того, датчик снабжен дополнительными тензорезисторами, размещенными диаметрально противоположно по образующим внутренней поверхности усеченного полого конуса, причем оси тензорезисторов и ось датчика расположены в плоскости, перпендикулярной оси двигателя.
На фиг.1 представлен разрез датчика для силоизмерительного устройства; на фиг.2 и 3 - схемы расположения датчиков на двигателе для измерения тяги соответственно с одной силовой подвесной и с двумя подвесками; на фиг.4 - схема расположения датчиков для измерения крутящего момента.
Датчик для силоизмерительного устройства содержит упругий элемент 1, выполненный в виде полого усеченного конуса с фланцем 2 у основания и ступицей 3 при вершине. Фланцем 2 датчик крепится к двигателю 4, а ступицей 3 жестко закрепляется к станку или мотораме самолета 5.
Усеченный полый конус с постоянным напряжением от изгиба по его высоте обеспечивает равномерную деформацию при изменении силы тяги, которая воспринимается тензорезисторами 6 (фиг.1), установленными по образующим внутренней поверхности усеченного конуса, диаметрально противоположно друг другу. Оси тензорезисторов 6 и датчика 1 расположены в одной плоскости с осью двигателя 4, причем ось датчика 1 перпендикулярна оси двигателя 4. Кроме того, по образующим внутренней поверхности конуса диаметрально противоположно друг другу, установлены дополнительные тензорезисторы 7, оси которых и ось датчика расположены в плоскости, перпендикулярной оси двигателя 4. Тензорезисторы 6 и 7 собраны по схемам электрического моста.
Работает силоизмерительное устройство следующим образом.
При приложении силы Р к ступице 3 упругий элемент 1 испытывает деформацию (фиг.1). Эта деформация передается тензорезисторам 6 и вызывает сжатие задний по направлению вектора силы и растяжение передних тензорезисторов 6, что изменяет их электрическое сопротивление. В электрическом мосте возникает напряжение разбаланса, по величине которого можно судить о приложенной нагрузке. Аналогично работают тензорезисторы 7, измеряющие крутящий момент.
Выполнение датчика 1 в виде усеченного полого конуса позволяет его одновременно использовать в качестве силовой цапфы, форма которой (усеченный полый конус) обеспечивает условие необходимой прочности.
Постоянство напряжения по высоте конуса обеспечивает равномерную деформацию упругого элемента датчика 1 и, следовательно, повышает точность измерения силы. Расположение осей тензорезисторов 6 и датчика 1 в одной плоскости с осью двигателя 4 (ось датчика 1 перпендикулярна оси двигателя) также повышает точность замера тяги.
Датчик для силоизмерительного устройства позволяет замерять тягу тензорезисторами 6 и крутящий момент тензорезистора 7 двигателя как при испытании на стенде, так и в полете.
название | год | авторы | номер документа |
---|---|---|---|
МАГНИТОВОЛНОВОЙ ФРИКЦИОННЫЙ ВАРИАТОР (ВАРИАНТЫ) | 1995 |
|
RU2115046C1 |
МАГНИТОВОЛНОВОЙ ФРИКЦИОННЫЙ ВАРИАТОР (ВАРИАНТЫ) | 1997 |
|
RU2138709C1 |
СПОСОБ ГЛУШЕНИЯ ШУМА РЕАКТИВНОЙ СТРУИ ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2079686C1 |
МНОГОКАНАЛЬНЫЙ АЭРОМЕТРИЧЕСКИЙ ЗОНД | 1993 |
|
RU2037157C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ОБКАТЫВАНИЕМ ОСЕСИММЕТРИЧНЫХ ИЗДЕЛИЙ | 1995 |
|
RU2085321C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УСИЛИЙ, ДЕЙСТВУЮЩИХ НА КОЛЕСО | 2000 |
|
RU2181194C2 |
ПОРШНЕВОЕ УПЛОТНЕНИЕ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1991 |
|
RU2022146C1 |
ГЛУШИТЕЛЬ ШУМА РЕАКТИВНОЙ СТРУИ ДВИГАТЕЛЯ | 1994 |
|
RU2079687C1 |
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВИАЦИОННЫХ ГТД | 1996 |
|
RU2118810C1 |
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ФИЗИЧЕСКОГО ПОЛЯ | 1993 |
|
RU2082100C1 |
Использование: для измерений реактивных сил и крутящих моментов авиационных двигателей при испытании на станке и в полете. Сущность изобретения: датчик содержит упругий элемент 1 в виде полого усеченного конуса с фланцем 2 у основания и ступицей 3 при вершине. Фланцем 2 датчик крепится к двигателю 4, а ступицей 3 жестко крепится к станку или к моторам самолета. Деформация от действия силы тяги и крутящего момента воспринимается тензорезисторами 6, 7, установленными по образующим внутренней поверхности усеченного конуса. 1 з.п. ф-лы, 4 ил.
а углы при вершинах наружной и внутренней проверхностей выбраны из соотношения
где D1 и D2 - диаметры внутренней и наружной поверхностей большого основания усеченного полого конуса;
d1 и d2 - диаметры внутренней и наружной поверхностей малого основания усеченного полого конуса;
α1 и α2 - углы при вершинах конусов внутренней и наружной поверхностей;
l1 и l2 - расстояния отточки приложения силы до кольцевых сечений конуса у ступицы и фланца соответственно,
при этом тензорезисторы закреплены по образующим внутренней поверхности конуса диаметрально противоположно относительно друг друга, а их оси расположены в одной плоскости с осью датчика и двигателя, ось которого перпендикулярна оси двигателя.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ образования коричневых окрасок на волокне из кашу кубической и подобных производных кашевого ряда | 1922 |
|
SU32A1 |
ОПИ Одесса, 1977. |
Авторы
Даты
1995-03-10—Публикация
1991-01-08—Подача