Изобретение относится к способу получения автомобильных бензинов переработкой малосернистых, сернистых и высокосернистых нефтей.
Известен способ получения автомобильных бензинов из малосернистых, и/или сернистых, и/или высокосернистых нефтей путем электрообессоливания последних пропусканием потока нефти через систему электродов, расположенных в электродегидраторах, атмосферной и/или атмосферно-вакуумной перегонки обессоленной нефти с использованием колонн атмосферной перегонки, стабилизации бензиновых фракций, вторичной перегонки стабильных фракций, гидроочистки полученной бензиновой фракции в присутствии катализатора с использованием реакторов гидроочистки, риформинга гидроочищенной фракции в присутствии катализатора в реакторах риформинга с последующим компаундированием фракций, полученных на стадиях процесса.
Указанному способу свойственны такие недостатки, как относительно невысокие качества и выход целевых продуктов, а также повышенные энергозатраты на процесс и недостаточная эффективность конструктивных решений технологических схем.
С целью устранения указанных недостатков предлагается описываемый способ получения автомобильных бензинов из малосернистых, и/или сернистых, и/или высокосернистых нефтей путем их электрообессоливания, атмосферной и/или атмосферно-вакуумной перегонки, стабилизации и вторичной перегонки стабильных бензиновых фракций, гидроочистки полученной бензиновой фракции в присутствии катализатора с использованием реакторов гидроочистки, риформинга гидроочищенной фракции в присутствии катализатора в реакторах риформинга и компаундирования полученных в процессах перегонки, стабилизации, гидроочистки и риформинг фракций, при котором электрообессоливание нефти проводят пропусканием потока через систему сетчато и/или ячеисто расположенных не менее чем в двух уровнях электродов, перекрывающих в совокупности высотный диапазон электродегидратора преимущественно в верхней половине высоты его корпуса, причем градиент высоты между уровнями электродов на пути восходящего потока нефти составляет 0,05-0,1 условного отрезка пути, совпадающего со средством вектором перемещения потока нефти в зоне наибольшего электродегидратора, проходимого потоком за 1 ч перемещения со средней скоростью процесса электрообессоливания, при перегонке обессоленной нефти используют колонны атмосферной перегонки, снабженные пакетами перекрестно-точных насадок, размещенными с высотным или высотноугловым смещением адекватно температурным зонам конденсации паров, при этом по крайней мере часть пакетов размещены в зоне конденсации бензиновой фракции 120-180о и перегонку проводят при подаче нефти в колонны, по крайней мере через два патрубка тангенциально расположенные в корпусе колонны в зоне питания, снабженной внутренним цилиндрическим отражателем потока, диаметр которого соотносится с диаметром корпуса колонны в зоне питания как (0,59-0,75):1, а высотный диапазон ввода потоков нефти составляет (0,21-0,28) высоты колонны от низа днища колонны, вторичной перегонке подвергают часть бензиновой фракции перегонки обессоленной нефти в количестве (0,51-0,61), при вторичной перегонке получают фракции, выкипающие в интервале температур НК 85оС, 85-180оС и остаточную, гидроочистке подвергают бензиновую фракцию 85-180оС, часть которой пропускают через один реактор гидроочистки, а другую часть в количестве (0,4-),6) от общего количества пропускают не менее, чем два реактора гидроочистки с избирательным варьированием прохождения потоков в последних с проведением риформинга по крайней мере в трех реакторах, по крайней мере последний из которых имеет глубинный радиальный ввод газопродуктовой смеси в катализатор.
В предпочтительных вариантах процесс проводят следующим образом. Электрообессоливание нефти проводят в электродегидраторах с горизонтально- ориентированным корпусом цилиндрической или составной конфигурации и рабочим объемом 80-200 м3, в электродегидраторах с корпусом сферической, или сфероидальной, и/или эллипсовидной, и/или овоидальной, и/или каплевидной формы в электродегидраторах составной с цилиндрическим корпусом и выпуклокриволинейным торцовыми участками и/или тороидальной формы, в электродегидраторах, продольная ось корпуса по крайней мере части которых ориентирована вертикально, а также в электродегидраторах, продольная ось корпуса по крайней мере части которых ориентирована горизонтально или под углом к горизонту.
Подачу нефти в колонне атмосферной перегонки осуществляют через патрубки, расположенные с углом разведения точек пересечения осей патрубков с корпусом колонны в интервале 30-180о с односторонней тангенциальной закруткой подаваемого потока через патрубки, ось и внутренняя горловина одного из которых ориентируют поток подаваемой через него парожидкостной нефтяной смеси в зоне питания колонны непосредственно на пересечение с аналогичным потоком, подаваемым через другой патрубок преимущественно в зоне выхода его из внутренней горловины последнего, подачу нефти в колонну атмосферной перегонки осуществляют через патрубки, оси которых ориентированы параллельно касательно удалены от условной точки касания с корпусом отражателя на расстояние b удовлетворяющее условию b ≥ 0,25 (Rк Ro), где Rк радиус с колонны в зоне питания, Rо радиус отражателя.
Перегонку проводят в колонне, цилиндрический отражатель в зоне питания которой установлен эксцентриситетно продольной оси колонны, в колонне цилиндрический отражатель которой выполнен с переменным радиусом кривизны в поперечном сечении, в колонне цилиндрический отражатель которой соединен с корпусом колонны кольцевой мембраной плоской, и/или ломаной, и/или криволинейной, и/или комбинированной конфигурации в поперечном сечении.
При перегонке используют колонну атмосферной перегонки, в которой регулярные пакеты перекрестноточных посадок выполнены из пространственно деформированных элементов из листовой нержавеющей стали, причем высота пакетов обеспечивает перекрытие температурных градиентов 2-8оС по высоте колонны, а площадь прохода паров через них составляет 38-81% относительно поперечного сечения колонны.
Перегонку в колонне атмосферной перегонки проводят при скорости прохождения паров разгоняемых фракций, по крайней мере равной 1,0-1,7 м/с.
При вторичной перегонке конденсацию бензиновых паров осуществляют в конденсаторах воздушного охлаждения.
При стабилизации получают газообразную фракцию НК 62оС, которую подвергают очистке от серосодержащих примесей раствором моноэтаноламина с последующим разделением на установке газофракционирования с выделением бензинового компонента на компаундирование бензинов.
При гидроочистке бензиновой фракции, последнюю пропускают не менее чем через два реактора, которые (обвязаны) закоммутированы по ходу газопаровой продуктовой смеси с возможностью прямого или обратного прохождения последней через слои катализатора, либо с возможностью их параллельного или попеременно раздельного включения в работу адекватнозаданным объемам и степени гидроочистки бензиновой фракции.
При гидроочистке в реакторах гидроочистки используют алюмокобальтовый, или алюмоникельмолибденовый, или цеолитсодержащий катализаторы гидроочистки или их сочетания.
При гидроочистке используют по крайней мере один реактор гидроочистки, по крайней мере в верхней зоне которого слой катализатора пригружен дискретным, и/или комбинированным паро-, газопроницаемым элементом из инертного или коррозионнотермостойкого материала или сочетания материалов с аналогичными свойствами, причем по крайней мере входная поверхность слоя катализатора на пути движения парогазопродуктового потока выполнена превышающей площадь сечения ректора гидроочистки, реактор, в котором слой катализатора насыпан с наклоном по крайней мере части по крайней мере верхней поверхности, реактор, в котором по крайней мере верхний слой катализатора насыпан с коническим и/или переменно ломанным, и/или переменно криволинейным, и/или комбинированным наклоном от центральной зоны к стенкам корпуса реактора, реактор, в котором катализатор по крайней мере в верхней части насыпного массива снабжен включениями из инертных элементов с аэрогидравлическим сопротивлением, меньшим чем у эквивалентного по объему слоя катализатора, реактор, в котором элементы с повышенной аэро-, гидравлической проницаемостью выполнены в виде сетчатых и/или перфорированных цилиндрических или многогранных стаканов или патрубков, реактор, в котором часть аэрогидравлически проницаемых элементов выполнена в виде насыпных вкраплений из инертных частиц радиусом, большим, чем радиус или приведенный радиус частиц катализатора, реактор, в котором по крайней мере часть элементов с повышенной аэрогидравлической прозрачностью выполнена комбинированной с насыпным сердечником и гибкой или жесткой сетчатой или перфорированной оболочкой, реактор, в котором по крайней мере в верхней зоне по крайней мере часть слоя катализатора смешана с более крупными частицами инертного материала, реактор, в котором соотношение частиц выполнено переменным с убыванием процентной доли инертных частиц в направлении движения парогазопродуктового потока, подвергаемого гидроочистке.
При гидроочистке по крайней мере часть реакторов гидроочистки устанавливают с наклоном продольной оси относительно горизонта, используют по крайней мере часть реакторов с горизонтально ориентированной продольной осью по крайней мере один реактор гидроочистки выполнен тороидальным.
При гидроочистке количество бензиновой фракции, подвергаемой гидроочистке превышает установленную мощность блока установки каталитического риформинга, а избыточное количество гидроочищенной бензиновой фракции направляют на компаундирование автомобильных бензинов.
При риформинге по крайней мере на одной установке риформинга по крайней мере два последних реактора обвязаны параллельно по ходу парогазопродуктовой смеси, по крайней мере в части реакторов риформинга используют алюмоплатиновые катализаторы или платиново-рениевые катализаторы, или их сочетания, по крайней мере один реактор риформинга, по крайней мере в верхней зоне которого слой катализатора пригружен дискретным, и/или комбинированным парогазопроницаемым элементом из инертного или коррозионнотермостойкого материала или сочетания материалов с аналогичными свойствами, причем по крайней мере входная поверхность слоя катализатора на пути движения парогазопродуктового потока выполнена превышающей площадь сечения реактора риформинга.
При риформинге используют реактор, в котором слой катализатора насыпан с наклоном по крайней мере части по крайней мере верхней поверхности, реактор, в котором по крайней мере верхний слой катализатора насыпан с коническим, и/или переменно ломанным, и/или переменно криволинейным, и/или комбинированным наклоном от центральной зоны к стенкам корпуса реактора, реактор, в котором катализатор по крайней мере в верхней части насыпного массива снабжен включениями из инертных элементов с аэрогидравлическим сопротивлением, меньшим чем у эквивалентного по объему слоя катализатора, реактор, в котором элементы с повышенной аэрогидравлической проницаемостью выполнены в виде сетчатых и/или перфорированных цилиндрических или многогранных стаканов или патрубков, реактор, в котором часть аэрогидравлически проницаемых элементов выполнена в виде насыпных вкраплений их инертных частиц радиусом, большим, чем радиус или приведенный радиус частиц катализатора, реактор, в котором по крайней мере часть элементов с повышенной аэрогидравлической прозрачностью выполнена комбинированной с насыпным сердечником и гибкой или жесткой сетчаткой, или перфорированной оболочкой, реактор, в котором по крайней мере в верхней зоне по крайней мере часть слоя катализатора смешана с более крупными частицами инертного материала, реактор, в котором соотношение частиц выполнено переменным с убыванием процентной доли инертных частиц в направлении движения парогазопродуктового потока, подвергаемого риформингу.
При риформинге по крайней мере часть реакторов риформинга устанавливают с наклоном продольной оси относительно горизонта, используют по крайней мере часть ректоров с горизонтально ориентированной продольной осью по крайней мере один реактор риформинга выполнен тороидальным.
В поток паропродуктовой смеси, пропускаемой через слой катализатора, в реакторах риформинга периодически вводят раствор хлоpорганического соединения, восстанавливающий активность катализатора.
В качестве хлорорганического соединения используют дихлорэтан или трихлорэтан.
Компаундирование бензиновых фракций проводят в резервуаре, снабженном не менее чем одним инжектором, который установлен в нижней половине резервуара под углом к горизонтальной оси, в резервуаре, в котором инжектор установлен на жестком внутреннем патрубке в нижней трети части центральной зоны резервуара с восходящим наклоном инжектируемого бензинового потока, в резервуаре, в котором инжектор установлен посредством тангенциально установленного патрубка.
Компаундирование проводят с использованием по крайней мере двух инжекторов, зафиксированных на тангенциально установленных патрубках со встречной закруткой потоков.
Компаундирование проводят с использованием не менее двух инжекторов, установленных с возможностью реактивного вращения в нижней или придонной части резервуара.
На фиг.1 представлена принципиальная схема проведения способа получения бензина; на фиг.2 представлен поперечный разрез электродегидратора с электродами 13; на фиг.3 представлен общий вид колонны с корпусом 14; узлом ввода нефти 15 и перекрестноточными насадками 16; на фиг.4 показан разрез по А-А на фиг.3; на фиг.5 представлен пакет перекрестноточных насадок 16; на фиг.6 представлено расположение штуцеров ввода сырья 17, 18 в колонну атмосферной перегонки (разрез по А-А штуцера на фиг.3 вариантное решение).
Согласно принципиальной схеме способ проводят следующим образом. Исходную нефть по линии 1 направляют на блок электрообессоливания 2. Затем по линии 3 подают на блок атмосферной или атмосферно вакуумной перегонки 4. Полученную бензиновую фракцию направляют по линии 5 на блок стабилизации 6. Стабильную бензиновую фракцию подвергают вторичной перегонке на блоке 7. Бензиновую фракцию 85-180оС по линии 8 подают на блок гидроочистки 9. Гидроочищенную бензиновую фракцию по линии 10 направляют на блок риформинга 11. Целевой продукт получают компаундированием продукта риформинга, отводимого по линии 12 и продуктов различных стадий, отводимых по линиям 13-16.
Изобретением предусмотрены также вариации различных стадий получения бензина, не показанные на принципиальной технологической схеме (фиг.1).
Описываемый способ иллюстрируется нижеприведенным примером, представленным в виде таблицы.
Реализация предлагаемого способа получения автомобильных бензинов обеспечивает необходимое высокое качество целевых продуктов при повышении их выхода на 2-3 отн. и более при одновременном снижении технологических затрат на различных стадиях процесса на 5-17%
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СВЕТЛЫХ НЕФТЕПРОДУКТОВ | 1994 |
|
RU2033421C1 |
СПОСОБ ПОЛУЧЕНИЯ РЕАКТИВНОГО ТОПЛИВА | 1994 |
|
RU2033418C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА | 1994 |
|
RU2033419C1 |
СПОСОБ ПОЛУЧЕНИЯ АВТОМОБИЛЬНЫХ БЕНЗИНОВ (ВАРИАНТЫ) | 1999 |
|
RU2152978C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО И РЕАКТИВНОГО ТОПЛИВА | 1994 |
|
RU2075500C1 |
СПОСОБ ПОЛУЧЕНИЯ СВЕТЛЫХ НЕФТЕПРОДУКТОВ | 1999 |
|
RU2155208C1 |
СПОСОБ ПОЛУЧЕНИЯ СВЕТЛЫХ НЕФТЕПРОДУКТОВ | 1999 |
|
RU2152979C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА | 1999 |
|
RU2154086C1 |
СПОСОБ ПОЛУЧЕНИЯ РЕАКТИВНОГО ТОПЛИВА (ВАРИАНТЫ) | 1999 |
|
RU2153522C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА | 1999 |
|
RU2152974C1 |
Использование: в нефтехимии. Сущность изобретения: нефть с различным содержанием серы подвергают обессоливанию в электродегидраторах, уровень электродов в которых перекрывает его высотный диапазон в верхней половине корпуса, и градиент высоты между уровнями электродов на пути восходящего потока нефти равен 0,05 - 0,1 условного отрезка пути, совпадающего со средним вектором перемещения потока в зоне наибольшего миделя электродегидратора, проходимого потоком за 1 час перемещения со средней скоростью процесса, затем нефть подвергают перегонке, в том числе в атмосферной колонне, снабженной пакетами перекрестноточных насадок. Подачу нефти в колонну осуществляют через патрубки, тангенциально расположенные в корпусе колонны, в зоне питания. Последняя снабжена внутренним цилиндрическим отражателем потока, диаметр которого соотносится с диаметром корпуса, как (0,59 - 0,75) : 1. Высотный диапазон ввода потоков нефти равен 0,21 - 0,28 ее высоты. Часть стабильной бензиновой фракции подвергают риформингу. Продукт риформинга смешивают с фракциями, полученными на стадиях процесса. 52 з.п. ф-лы, 6 ил., 1 табл.
Эрих В.Н | |||
и др | |||
Химия и технология нефти и газа, Л.: Химия, 1985, с.96-152. |
Авторы
Даты
1995-04-20—Публикация
1994-07-20—Подача