СИСТЕМА ПАССИВНОГО ОТВОДА ТЕПЛОТЫ ОТ ЯДЕРНОЙ ЭНЕРГОУСТАНОВКИ Российский патент 1995 года по МПК G21C15/18 

Описание патента на изобретение RU2037893C1

Изобретение относится к атомной энергетике и предназначено для отвода теплоты от ядерного реактора, парогенератора и других теплоисточников ядерной энергоустановки.

Известны системы пассивного отвода теплоты от ядерной энергоустановки (ЯЭУ), в которых охлаждающая вода подается в реактор из аварийного бака под действием избыточного по отношению к реактору давления в баке [1] и 2]
Такие системы неэффективны и громоздки, обладают ограниченным временем работы, так как используется вода, запасенная в баке. Его объем должен быть столь большим, чтобы обеспечить требуемое время теплоотвода. Работа системы возможна только при снижении давления в реакторе до более низкого давления, чем давление в баке с запасом охлаждающей воды.

Известна система пассивного теплоотвода с подачей охлаждающей воды из аварийного бака струйным насосом [3]
В этой системе давление в баке может быть меньше давления в реакторе, но время работы системы также определяется размерами бака с запасом охлаждающей воды, т.е. ограничено допустимыми габаритами аварийного бака.

Этого недостатка лишена система, в которой теплоотвод от реактора либо парогенератора ЯЭУ осуществляется к конечному поглотителю теплоты с помощью замкнутого циркуляционного контура, движение теплоносителя в котором обеспечивается инжектором-конденсатором [4]
Однако для запуска инжектора-конденсатора требуется пусковая система с внешним энергоподводом, что нарушает принцип пассивности системы.

Наиболее близкой к заявленной является система пассивного отвода теплоты от ЯЭУ, содержащая теплообменник и контур циркуляции теплоносителя через теплоисточник, параллельно которому подключен по инжектирующей стороне струйный насос в виде инжектора-конденсатора, на выходном трубопроводе которого установлен обратный клапан. Впускной канал теплообменника соединен с выходом струйного насоса, а выпускной канал соединен с резервуаром высокого давления, в который погружен струйный насос [5]
Система имеет следующие недостатки. Наличие дополнительного резеpвуара высокого давления снижает надежность системы. В резервуаре должна быть свободная поверхность воды с газовой подушкой над нею. Изменение уровня воды в резеpвуаре может привести к захвату газа инжектором со срывом его работы. Растворение газа в воде отрицательно сказывается на работе теплообменного оборудования. При срыве работы системы затруднен повторный запуск инжектора-конденсатора.

Задача, решаемая предложенным решением, повышение надежности системы, надежности запуска и работы инжектора-конденсатора. Технический результат заключается в исключении из системы резервуара высокого давления.

Указанный технический результат достигается за счет того, что в системе пассивного отвода теплоты от ЯЭУ, содержащей теплообменник и контур циркуляции теплоносителя через теплоисточник, параллельно которому подключен по инжектирующей стороне струйный насос в виде инжектора-конденсатора, на выходном трубопроводе которого установлен обратный клапан, в соответствии с изобретением вход струйного насоса по инжектируемой среде соединен с выпускным каналом теплообменника, впускной канал которого соединен с водным объемом теплоисточника, а к выходному трубопроводу струйного насоса между струйным насосом и обратным клапаном подключен конденсационный модуль.

На чертеже представлена схема системы пассивного отвода теплоты от ЯЭУ на примере отвода теплоты от парогенератора ЯЭУ.

Система пассивного отвода теплоты от ЯЭУ, включающей парогенератор (или реактор) 1, содержит контур циркуляции теплоносителя через парогенератор, включающий трубопроводы 2, 3. Параллельно парогенератору 1 подключен струйный насос 4 в виде инжектора-конденсатора с помощью трубопроводов 5 и 6. Инжектирующее сопло 7 (инжектирующая сторона) струйного насоса 4 подключено к трубопроводу 3 пара, а выход струйного насоса соединен трубопроводами 8 и 6 через обратный клапан 9 с трубопроводом 2 подачи питательной воды. Система содержит также теплообменник 10 с теплопередающей трубчаткой 11. Впускной канал 12 теплообменника 10 соединен с водным объемом 13 парогенератора 1. Выпускной канал 14 теплообменника 10 соединен с входом 15 струйного насоса 4 по инжектируемой среде. Вход тепловоспринимающего потока теплообменника 10 соединен с источником 16 подпиточной воды, а выход трубопроводом 17 с областью сброса пара, напримеp с атмосферой. К выходному трубопроводу 8 струйного насоса 4 через нормально закрытый клапан 18 подсоединен конденсационный модуль 19 (пусковая емкость).

Система работает следующим образом.

В ждущем режиме система заполнена водой, образовавшейся из сконденсированного пара, за исключением конденсационного модуля 19, в котором находится парогазовая смесь. Давление в инжектирующей и инжектируемой средах струйного насоса 4 определяется давлением в парогенераторе 1, а давление в конденсационном модуле 19 определяется его температурой и близок к атмосферному. При повышении давления в парогенераторе 1 сверх допустимого предела или по команде оператора открывается клапан 18, и в конденсационный модуль 19 через струйный насос 4 начинают истекать инжектируемый и инжектирующий потоки. По мере заполнения конденсационного модуля в инжектирующем сопле 7 появляется пар, а на вход 15 инжектируемой среды насоса 4 поступает через теплообменник 10 переохлажденная вода. Обратный клапан 9 при этом препятствует попаданию конденсата из парогенератора 1 в конденсационный модуль 19. После выхода струйного насоса 4 на рабочий режим работы по параметрам инжектирующего и инжектируемого потоков и нарастания давления в конденсационном модуле 19 до значения, превышающего давление в парогенераторе, открывается обратный клапан 9 и поток воды из струйного насоса 4 направляется в парогенератор 1. В результате подвода теплоты в парогенераторе образуется пар, который снова направляется в инжектирующее сопло 7 насоса 4, а конденсат через впускной канал 12 попадает в теплообменник 10, переохлаждается в нем и подается на вход 15 инжектируемой среды насоса 4. Подпиточная вода из источника 16, воспринимая отводимую от парогенератора 1 теплоту, испаряется и по трубопроводу 17 удаляется, например, в атмосферу. После запуска системы конденсационный модуль 19 заполняется полностью и расход среды в него прекращается. Таким образом, система позволяет осуществить передачу теплоты в теплообменник. При этом система имеет более высокую стабильность и надежность работы.

Похожие патенты RU2037893C1

название год авторы номер документа
СИСТЕМА ПАССИВНОГО ОТВОДА ТЕПЛА РЕАКТОРНОЙ УСТАНОВКИ 2016
  • Пейч Николай Николаевич
  • Шаманов Дмитрий Николаевич
  • Алексеев Дмитрий Анатольевич
  • Аленичев Олег Николаевич
  • Андреев Александр Георгиевич
  • Гравшин Александр Валериевич
RU2631057C1
АВАРИЙНАЯ СИСТЕМА ОХЛАЖДЕНИЯ ЯДЕРНОГО РЕАКТОРА 2016
  • Войтюк Валерий Викторович
RU2650504C2
СИСТЕМА ПАССИВНОГО ОТВОДА ТЕПЛА РЕАКТОРНОЙ УСТАНОВКИ 2018
  • Пейч Николай Николаевич
  • Шаманов Дмитрий Николаевич
  • Алексеев Дмитрий Анатольевич
  • Шаманова Инна Валерьевна
  • Андреев Александр Георгиевич
  • Пахомов Алексей Николаевич
  • Соколов Андрей Николаевич
  • Хизбуллин Ахмир Мугинович
RU2732857C1
СИСТЕМА ПАССИВНОГО ОТВОДА ТЕПЛА РЕАКТОРНОЙ УСТАНОВКИ 2020
  • Пейч Николай Николаевич
  • Шаманов Дмитрий Николаевич
  • Алексеев Дмитрий Анатольевич
RU2740786C1
СПОСОБ ОБРАБОТКИ ЖИДКОГО ПИЩЕВОГО ПРОДУКТА 1992
  • Петухов Илья Иванович[Ua]
  • Бредихин Виктор Владимирович[Ua]
  • Селиванов Вадим Григорьевич[Ua]
  • Сопленков Константин Иванович[Ru]
  • Шахов Юрий Васильевич[Ua]
RU2048115C1
МАНЕВРЕННАЯ АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ 2010
  • Анисимов Александр Михайлович
  • Багдасаров Юрий Эдуардович
  • Сопленков Константин Иванович
  • Чаховский Владимир Михайлович
RU2453938C1
ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2000
  • Волков В.А.
  • Нигматулин Б.И.
  • Сопленков К.И.
  • Селиванов Вадим Григорьевич
  • Воронин А.Л.
RU2192054C2
СПОСОБ И СИСТЕМА ПРИВЕДЕНИЯ АТОМНОЙ ЭЛЕКТРОСТАНЦИИ В БЕЗОПАСНОЕ СОСТОЯНИЕ ПОСЛЕ ЭКСТРЕМАЛЬНОГО ВОЗДЕЙСТВИЯ 2018
  • Безлепкин Владимир Викторович
  • Гаврилов Максим Владимирович
  • Третьяков Евгений Александрович
  • Козлов Вячеслав Борисович
  • Образцов Евгений Павлович
  • Мезенин Евгений Игоревич
  • Ширванянц Антон Эдуардович
  • Альтбреген Дарья Робертовна
  • Носанкова Лайне Вяйновна
  • Егоров Евгений Юрьевич
  • Лукина Анжела Васильевна
  • Вибе Дмитрий Яковлевич
RU2697652C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2006
  • Чаховский Владимир Михайлович
  • Сопленков Константин Иванович
  • Воронин Александр Леонидович
  • Беркович Виктор Мозесович
  • Крушельницкий Виктор Николаевич
  • Копытов Илья Игоревич
  • Давлетбаев Разим Ильгамович
RU2315185C1
ПАРОТУРБИННАЯ УСТАНОВКА С ТРАНСЗВУКОВЫМИ СТРУЙНЫМИ АППАРАТАМИ 2005
  • Баранов Эдуард Михайлович
  • Кузякин Юрий Иванович
  • Никонов Евгений Николаевич
RU2303144C2

Реферат патента 1995 года СИСТЕМА ПАССИВНОГО ОТВОДА ТЕПЛОТЫ ОТ ЯДЕРНОЙ ЭНЕРГОУСТАНОВКИ

Сущность изобретения: система содержит теплообменник 10 и контур циркуляции теплоносителя ядерной энергоустановки, параллельно которому подключен струйный насос 4 в виде инжектора-конденсатора. Вход струйного насоса по инжектируемой среде соединен с выпускным каналом теплообменника 10, впускной канал которого соединен с теплоисточником 1 в области, предназначенной для конденсата.На выходном трубопроводе 8 струйного насоса 4 установлен обратный клапан 9, между которым и струйным насосом помещен конденсационный модуль 19, с помощью которого осуществляется запуск системы. Конденсат из теплоисточника (парогенератора или реактора) поступает в теплообменник, охлаждается в нем и подается в сопло инжектируемого потока струйного насоса. 1 ил.

Формула изобретения RU 2 037 893 C1

СИСТЕМА ПАССИВНОГО ОТВОДА ТЕПЛОТЫ ОТ ЯДЕРНОЙ ЭНЕРГОУСТАНОВКИ, содержащая теплообменник и контур циркуляции теплоносителя через теплоисточник, параллельно которому подключен по инжектирующей стороне струйный насос в виде инжектора-конденсатора, на выходном трубопроводе которого установлен обратный клапан, отличающаяся тем, что вход струйного насоса по инжектируемой среде соединен с выпускным каналом теплообменника, впускной канал которого соединен с водным объемом теплоисточника, а к выходному трубопроводу струйного насоса между струйным насосом и обратным клапаном подключен конденсационный модуль.

Документы, цитированные в отчете о поиске Патент 1995 года RU2037893C1

Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Патент США N 4687626, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 037 893 C1

Авторы

Сопленков Константин Иванович[Ru]

Селиванов Вадим Григорьевич[Ua]

Филимонцев Юрий Николаевич[Ru]

Нигматулин Булат Искандерович[Ru]

Бредихин Виктор Владимирович[Ua]

Трубкин Евгений Иванович[Ru]

Емельяненко Евгений Захарович[Ua]

Козенюк Анатолий Александрович[Ru]

Найденышев Михаил Александрович[Ru]

Крушельницкий Виктор Николаевич[Ru]

Викин Вячеслав Андреевич[Ru]

Зарубаев Владимир Станиславович[Ru]

Лоскутов Виктор Федорович[Ru]

Коровкин Владимир Александрович[Ua]

Фридман Николай Абрамович[Ua]

Корниенко Арнольд Григорьевич[Ru]

Беркович Виктор Мозесович[Ru]

Гуревич Лев Исаакович[Ru]

Федоров Валентин Григорьевич[Ru]

Рогов Михаил Фалеевич[Ru]

Бирюков Геннадий Игнатьевич[Ru]

Даты

1995-06-19Публикация

1993-07-22Подача