ВОЛОКОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ГИДРОФИЗИЧЕСКИХ ПАРАМЕТРОВ МОРСКОЙ СРЕДЫ Российский патент 1995 года по МПК H04R1/44 

Описание патента на изобретение RU2047279C1

Изобретение относится к технической физике и может быть использовано в гидроакустике для измерений солености, температуры, скорости звука и градиента звукового давления в морской среде.

Известен волоконно-оптический преобразователь температуры или давления [1] выполненный в виде двух одномодовых волокон, соединенных в поляризационный интерферометр. Волокна в паре подбираются таким образом, чтобы интерферометр реагировал либо на изменение температуры, либо на изменение давления.

Недостатком такого преобразователя является невозможность с его помощью измерять одновременно несколько гидрофизических параметров.

Известен волоконно-оптический преобразователь гидрофизических параметров морской среды, содержащий интерферометр в виде двух волоконных катушек, расположенных на известном расстоянии друг от друга с возможностью контактирования с морской средой, источник когерентного света и фотоприемник, подключенный к усилителю, связанному с микропроцессором и регистратором градиента звукового давления [2] Данный градиентный гидрофон принят за прототип.

Недостатком этого преобразователя является невозможность с его помощью измерять несколько гидрофизических параметров, например дополнительно измерять соленость, температуру и скорость звука морской среды.

Техническим результатом, получаемым от применения изобретения, является возможность измерения одновременно нескольких параметров морской среды, таких как соленость, температура, скорость звука и, как в прототипе, градиента звукового давления.

Данный технический результат получается за счет того, что волоконно-оптический преобразователь (ВОП) гидрофизических параметров морской среды, содержащий интерферометр в виде двух волоконных катушек, расположенных на известном расстоянии друг от друга с возможностью контактирования с морской средой, источник когерентного света и фотоприемник, подключенный к усилителю, связанному с микропроцессором и регистратором градиента звукового давления, дополнительно содержит ультразвуковой излучатель, установленный напротив волоконных катушек, одна из которых выполнена из металлизированного волокна, фильтр низких частот, фильтр высоких частот, полосовой фильтр, регистратор температуры и регистратор солености, при этом усилитель связан с микропроцессором через параллельно соединенные фильтр низких частот и полосовой фильтр, с регистратором градиента звукового давления через фильтр высоких частот, а с регистратором температуры через фильтр низких частот, причем выход микропроцессора подключен к выходу регистратора солености.

Кроме того, предлагаемый ВОП может дополнительно содержать волоконно-оптический преобразователь гидростатического давления, соединенный с входом микропроцессора, а также регистратор скорости звука, подключенный к выходу полосового фильтра.

На фиг. 1 представлена оптико-электронная схема ВОП; на фиг. 2 блоки электронной аппаратуры ВОП; на фиг. 3 спектрограмма, поясняющая работу преобразователя.

ВОП содержит (фиг. 1) интерферометр, выполненный в виде двух волоконных катушек 1 и 2, расположенных с возможностью контактирования с морской средой за водонепроницаемой стенкой 3. Катушки 1 и 2 расположены на известном расстоянии Δ х друг от друга.

Имеется также источник 4 когерентного света (например, лазерный диод) и фотоприемник 5 (например, фотодиод), оптически согласованные через оптические вводные и выводные устройства 6 и 7 с волоконными катушками 1 и 2 интерферометра.

Напротив волоконных катушек 1 и 2 установлен ультразвуковой излучатель 8 на частоту ω1, подключенный к генератору электрических колебаний (не показан). Частота ω1, ультразвуковой волны выбирается исходя из того, чтобы расстояние Δ х было меньше четверти длины волны.

Фотоприемник 5 подключен к усилителю 9 (фиг. 2), выход которого связан через параллельно соединенные полосовой фильтр 10 и фильтр 11 низких частот с входами микропроцессора 12, работающему по алгоритму, приведенному выше. Один из выходов микропроцессора 12 подключен к волоконно-оптическому преобразователю 13 гидростатического давления.

Имеется также фильтр 14 высоких частот, через который усилитель 9 соединен выходом с регистратором 15 градиента звукового давления. Через фильтр 11 низких частот усилитель 9 соединен выходом с регистратором 16 температуры.

Регистраторы 17 и 18 соответственно солености и гидростатического давления подключены к выходам микропроцессора 12 и преобразователя 13 гидростатического давления. Регистратор 19 скорости звука подключен к выходу полосового фильтра 10.

Одна из волоконных катушек, например катушка 1, выполнена из металлизированного волокна, а другим из обычного кварцевого или полимерного волокна в оболочке. Волокно, покрытое тонким слоем металла, например алюминия, становится нечувствительным к температуре, а чувствительно только к давлению, в том числе звуковому. Обычное же волокно чувствительно как к температуре, так и в давлению.

Для удобства первоначальной настройки рабочей точки волоконного интерферометра на разность фаз, равную 90о, т.е. вместо наибольшей крутизны и линейности выходной кривой интерферометра в одно из плеч ВОП устанавливают фазосдвигающее устройство (не показано).

Оптико-электронные блоки особенностей не имеют. Их описание представлено в специальной научно-технической литературе по волоконным датчикам. Ультразвуковой излучатель также особенностей не имеет.

Перед началом работы ВОП проходит градуировку по температуре и градиенту звукового давления.

ВОП работает следующим образом.

Устанавливают первичный преобразователь ВОП (элементы 1, 2 и 8) в исследуемой морской среде. Включают когерентный источник 4 света, фотоприемник 5, ультразвуковой излучатель 8 (фиг. 1), а также все блоки электронной аппаратуры (фиг. 2).

На волоконные катушки 2 и 1 будут воздействовать пульсации звукового давления и пульсации температуры. Поскольку волоконная катушка металлизирована и нечувствительная к изменениям температуры Т, то на выходе волокнистого интерферометра появится два сигнала (фиг. 3): низкочастотный Т( ω ), где ω круговая частота, и высокочастотный Δ p/ Δ x(ω ), пропорциональный градиенту звукового давления. Эти сигналы разделяются фильтрами 11 и 14 низких и высоких частот и регистрируются регистраторами 16 и 15.

Для определения солености S на вход ВОП подается ультразвуковая волна с частотой ω1 и фазовым способом определяется скорость С ультразвука в морской среде, связанной как известно с гидрофизическими параметрами среды следующим соотношением: С 1492,9 + 3 (Т 10) 0,006 (Т 10)2 0,04 (Т 18)2 + + 1,2 (S 35) 0,01 (Т 18) (S 35) + 0,0164 Z (1) где Т температура, оС, S соленость, Z глубина, м, С скорость ультразвука, м/с.

Поскольку любой интерферометр преобразует фазовые изменения в амплитудные, то амплитуда сигнала на частоте ω1 будет характеризовать скорость звука в морской среде. В связи с изменениями скорости звука при наличии пульсаций температуры и солености среды спектр в окрестности частоты ω1 уширяется (фиг. 3).

Скорость звука С может определяться абсолютным способом или путем предварительной градуировки ВОП по скорости звука. Величина скорости звука регистрируется регистратором 19.

На вход микропроцессора 12 поступает информация о скорости звука и температуре, а если изменяется глубина Z, то и о гидростатическом давлении с датчика 13. Последний целесообразно выбрать также волоконно-оптическим, чтобы блоки преобразования (не показаны) выходных сигналов были однотипными. В микропроцессоре 12 происходит преобразования поступивших на него сигналов и расчет по алгоритму (1) солености морской среды.

Похожие патенты RU2047279C1

название год авторы номер документа
ВОЛОКОННО-ОПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ ГИДРОФИЗИЧЕСКИХ ПАРАМЕТРОВ МОРСКОЙ СРЕДЫ 1993
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
RU2061226C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК СКОРОСТНОГО НАПОРА ПОТОКА ЖИДКОСТИ 1993
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
RU2060505C1
ОПТИКО-ВОЛОКОННЫЙ ТЕРМОАНЕМОМЕТР 1993
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
RU2060504C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ИНТЕРФЕРОМЕТР САНЬЯКА ДЛЯ ПОДВОДНЫХ ИССЛЕДОВАНИЙ 1994
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов А.Д.
RU2107282C1
ОПТИКО-ВОЛОКОННЫЙ ГИДРОФОН 1993
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
RU2060597C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ПРИЕМНИК ГРАДИЕНТА ЗВУКОВОГО ДАВЛЕНИЯ 1994
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов А.Д.
RU2091984C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ГИДРОФИЗИЧЕСКИХ ПАРАМЕТРОВ МОРСКОЙ СРЕДЫ 2004
  • Власов Юрий Николаевич
  • Маслов Валерий Константинович
  • Цыганков Сергей Григорьевич
RU2271617C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ГИДРОФОН 1993
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
RU2090983C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ГИДРОФОН С КОМПЕНСАЦИЕЙ ГИДРОФИЗИЧЕСКИХ ПОМЕХ 1996
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов А.Д.
RU2105961C1
ПОДВОДНОЕ РАЗВЕРТЫВАЮЩЕЕ УСТРОЙСТВО 2001
  • Аббясов Зинюр
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов А.Д.
  • Цыганков С.Г.
RU2214656C2

Иллюстрации к изобретению RU 2 047 279 C1

Реферат патента 1995 года ВОЛОКОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ГИДРОФИЗИЧЕСКИХ ПАРАМЕТРОВ МОРСКОЙ СРЕДЫ

Использование: в гидроакустике. Сущность изобретения: устройство содержит две волоконные катушки, связанные оптически в интерферометр, источник когерентного света, ультразвуковой излучатель, фотоприемник. Кроме того, устройство включает усилитель, фильтр низких частот, фильтр высоких частот, полосовой фильтр, микропроцессор, регистраторы температуры, солености, градиента звукового давления. Одна из волоконных катушек выполнена из металлизированного волокна. 2 з. п. ф-лы, 3 ил.

Формула изобретения RU 2 047 279 C1

1. ВОЛОКОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ГИДРОФИЗИЧЕСКИХ ПАРАМЕТРОВ МОРСКОЙ СРЕДЫ, содержащий интерферометр в виде двух волоконных катушек, расположенных на известном расстоянии друг от друга с возможностью контактирования с морской средой, источник когерентного света и фотоприемник, подключенный к усилителю, связанному с микропроцессором и регистратором градиента звукового давления, отличающийся тем, что дополнительно содержит ультразвуковой излучатель, установленный напротив волоконных катушек, одна из которых выполнена из металлизированного волокна, фильтр низких частот, фильтр высоких частот, полосовой фильтр, регистратор температуры и регистратор солености, при этом усилитель связан с микропроцессором через параллельно соединенные фильтр низких частот и полосовой фильтр, с регистратором градиента звукового давления через фильтр высоких частот, регистратором температуры через фильтр низких частот, причем выход микропроцессора подключен к выходу регистратора солености. 2. Преобразователь по п.1, отличающийся тем, что дополнительно содержит волоконно-оптический преобразователь гидростатического давления, соединенный с входом микропроцессора. 3. Преобразователь по п.1, отличающийся тем, что дополнительно содержит регистратор скорости звука, подключенный к выходу полосового фильтра.

Документы, цитированные в отчете о поиске Патент 1995 года RU2047279C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Букреев И.Н
и др
Волоконно-оптические датчики
Обзоры по электронной технике
Сер
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Радиодетали и радиокомпоненты, Вып.1(1027)
М.: ЦНИИ "Электроника", 1984, с.27-28.

RU 2 047 279 C1

Авторы

Власов Ю.Н.

Маслов В.К.

Сильвестров С.В.

Даты

1995-10-27Публикация

1993-08-18Подача