Изобретение относится к электротехнике, в точнее к линии электропередачи на сверхвысоком напряжении и может быть использовано на действующей ЛЭП СВН.
Известна ЛЭП с расщепленным на n составляющих проводом, в которой благодаря расщеплению провода при относительно тонких составляющих достигнут класс сверхвысокого напряжения [1] ЛЭП СВН вынуждены выводить из работы ради плавки гололеда выпрямленным током короткого замыкания.
Наиболее близкой к заявленной является ЛЭП с расщепленным на n составляющих проводом, взаимной маловольтной изоляцией составляющих в пролете провода и конденсатором с шунтирующим аппаратом в рассечке по крайней мере одной из составляющих [2] Эта ЛЭП принята за прототип. Размыканием аппарата конденсатора достигается регулирование тока в составляющих по отношению к току самого провода. Однако при относительно тонких составляющих провода, например 3хАС-300, диапазон регулирования тока мал и не обеспечивает потребности в плавке гололеда.
Целью изобретения является расширение диапазона регулирования тока составляющих, например до плавки гололеда под рабочим напряжением ЛЭП.
Цель достигается тем, что в рассечку составляющей провода подсоединено по одной катушке индуктивности, причем катушки попарно установлены на одном сердечнике и соединены встречно. Конденсатор с шунтирующим аппаратом подсоединен в рассечку одной составляющей, а катушки индуктивности в цепь другой составляющей; шунтирующий аппарат конденсатора снабжен блоком автоматического управления от датчиков веса гололеда и тока провода.
На фиг.1 показана дальняя ЛЭП СВН; на фиг.2 ЛЭП 330 кВ; на фиг.3 ЛЭП 500 кВ; на ифг.4 ЛЭП 750 кВ.
Провод 1 на особо гололедном участке в пролетах 2-2 имеет составляющие 3-6 с маловольтной взаимной изоляцией 7, где в рассечку составляющей 3, 6 подсоединен конденсатор 8 с шунтирующим аппаратом 9. Дополнительно в рассечку составляющих 3, 6 (фиг.2) и составляющих 4, 5 (фиг.3,4) подсоединены по одной катушке 10, 11 индуктивности попарно установленных на общем сердечнике и соединенных встречно. Шунтирующий аппарат 9 снабжен блоком 12 автоматического управления от датчиков веса гололеда 13 и тока провода 14.
В нормальном режиме гололеда нет и датчик 13 с блоком 12 держит аппарат 9 в замкнутом положении: конденсатор 8 зашунтирован, а катушки 10, 11 размагничены одинаковыми токами. Конденсатора 8 и катушек 10, 11 как бы электрически нет в проводе 1, хотя они и установлены на его потенциале.
Как только в любом из пролетов 2-2 появится гололед или снизится ток провода 1, например при сбросе нагрузки, датчики 13, 14 выводят блок 12 из равновесия и он автоматически размыкает аппарат 9. Возникает более мощный, чем в ЛЭП по прототипу, резонанс токов в составляющих 3-6 из соотношений:
Хc=хо · 1+ХL;
Φ=arctg(Хс(rо · 1));
К=I3/I1=l/cos Φ;
Vc=I3 · Хс · sin Φ;
Qс=I3 · Хс · sin2 Φ, где l длина провода 1 в пролете 2-2, км;
rо и хо удельное активное и взаимное реактивное сопротивление составляющей, Ом/км;
Хс и ХL реактансы соответственно конденсатора 8 и катушки 10, 11, Ом; I1 и I3 амплитуды токов составляющей соответственно в нормальном режиме и при резонансе токов, А;
Vc и Qс напряжение и ток конденсатора 8, В и кВА.
Например, для ЛЭП 500 кВ с проводами 3хАС-300; I1=3х132 А; l=0,4 км; rо= 0,1 Ом/км; хо=0,2344 Ом/км; ХL=0,1875 Ом; Хс=0,281 Ом; Φ=81,9оС; К=7,06 раз; I3=I4=I5=932 А; Vс=260 В; Qс=240 кВА.
Оснастив блок 12 задатчиком нескольких циклов замыкания и размыкания аппарата 9, можно после подплавления гололеда в течение нескольких минут произвести последующее электродинамичекское встряхивание составляющих в проводе, что позволяет быстрее освободить их от гололедо-изморозевого осадка.
Благодаря маловольтности и малого веса конденсатор 8, катушки 10, 11, блок 12 и датчики 13, 14 можно вписать в окружность самого расщепленного провода 1 и подвесить вместе с ним к опоре 2, провод 1 в каждом из пролетов 2-2 снабдить маловольтными изолирующими втулками 7, например из пластика толщиной 5 мм, в узле крепления прочной металлической распорки к составляющей; снимается стресс дежурного персонала ЕЭС России из-за автоматизации плавки гололеда под рабочим напряжением ЛЭП; автоматизируетя профилактика гололеда в пределах одного провода и одного пролета между опорами ЛЭП; повышается надежность реакторов, шунтирующих начало и конец ЛЭП; подавляется выпуклость перенапряжений и короны в средней точке, равноудаленной от концов ЛЭП, в режиме сброса электронагрузки.
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОВОЛЬТНАЯ СЕТЬ И СПОСОБ ПЛАВКИ ГОЛОЛЕДА НА ПРОВОДАХ ЕЕ ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ | 2009 |
|
RU2393605C1 |
Электропередача Кирееева Петра Афанасьевича и Павлова Геннадия Леонидовича | 1980 |
|
SU879701A1 |
ВЫСОКОВОЛЬТНАЯ СЕТЬ И СПОСОБ ЕЕ ЗАЩИТЫ ОТ ГОЛОЛЕДА | 2013 |
|
RU2547272C2 |
СПОСОБ ПЛАВКИ ГОЛОЛЕДА НА ПРОВОДАХ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ БЕЗ ПЕРЕРЫВА ЭЛЕКТРОСНАБЖЕНИЯ ПОТРЕБИТЕЛЕЙ | 2021 |
|
RU2785805C1 |
ВЫСОКОВОЛЬТНАЯ СЕТЬ | 2007 |
|
RU2365011C2 |
Устройство для плавки гололеда | 1980 |
|
SU993370A1 |
Устройство для плавки гололеда | 1977 |
|
SU680588A1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ БОРЬБЫ С ГОЛОЛЕДОМ НА ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ | 2008 |
|
RU2356148C1 |
СПОСОБ ПЛАВКИ ГОЛОЛЕДА | 2008 |
|
RU2375801C1 |
СИСТЕМА ПЕРЕДАЧИ СИГНАЛОВ ПО ЛИНИИ ЭЛЕКТРОСНАБЖЕНИЯ ДЛЯ ОБНАРУЖЕНИЯ ГОЛОЛЕДНЫХ ОТЛОЖЕНИЙ НА ПРОВОДАХ | 1997 |
|
RU2129334C1 |
Использование: в электротехнике, в линиях электропередачи сверхвысокого напряжения. Сущность: в электропередаче с расщепленными на n составляющих проводами в рассечку одной составляющей включают конденсатор, зашунтированный выключателем, и последовательно с ним - катушку индуктивности, во вторую составляющую включают вторую катушку индуктивности. Катушки установлены на одном сердечнике и соединены встречно. Возможно включение конденсатора в рассечку одной составляющей, а катушки - в рассечки двух других составляющих. Конденсатор и катушка индуктивности составляют резонансную цепь, что при необходимости увеличивает ток в составляющих провода, используемых, например, для плавки гололеда. 2 з. п. ф-лы, 4 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Мельников Н.А | |||
и др | |||
Катодная трубка Брауна | 1922 |
|
SU330A1 |
М.: Энергия, 1974, с.376 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Электропередача Кирееева Петра Афанасьевича и Павлова Геннадия Леонидовича | 1980 |
|
SU879701A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1996-02-20—Публикация
1994-04-11—Подача