Изобретение относится к нефтедобывающей промышленности и может быть использовано для надежного разобщения водоносных и нефтеносных пластов, а также для устранения дефектов цементного кольца вокруг обсадных труб с целью ликвидации гидравлической связи между изолируемыми пластами.
Известен способ разобщения водоносных и нефтеносных пластов в скважине и устройство для его осуществления [1] В соответствии с известным способом в колонну труб закачивают цементный раствор. Колонну труб предварительно оборудуют первым и вторым срезными стопорными элементами. После закачки цементного раствора его задавливают в заколонное пространство до посадки цементировочной пробки на первый срезной стопорный элемент, повышают давление продавочной жидкости до среза первого срезного стопорного элемента и задавливают цементный раствор в водоносные пласты до посадки цементировочной пробки на второй срезной стопорный элемент.
Недостатками известных способа и устройства являются необходимость использования пакера и в связи с этим низкая надежность изоляционных работ, слож- ность конструкции устройства, повышенный расход цементного раствора.
Известен способ разобщения водоносных и нефтеносных пластов в скважине, включающий спуск колонны труб в скважину, закачивание цементного раствора и продавочной жидкости в колонну труб с применением цементировочной пробки, продавливание цементного раствора в заколонное пространство с одновременным возмущением в скважине гидродинамических импульсов давления путем повышения и резкого снижения давления и задавливание цементного раствора в водоносные пласты [2]
Недостатком этого способа является невысокая надежность изоляционных работ и повышенный расход цементного раствора.
Известно устройство для разобщения водоносных и нефтеносных пластов в скважине, включающее колонну труб и помещенный в ней посадочный узел, ряд последовательно установленных по длине колонны труб срезных стопорных элементов, цементировочную пробку под срезные стопорные элементы и ловитель [3]
Недостатком известного устройства является сложность его конструкции.
Задачей изобретения является получение технического результата, выражающегося в повышении надежности изоляционных работ, упрощении конструкции устройства, снижении расхода цементного раствора.
Существующие методы селективной изоляции водоносных пластов не дают необходимого результата, так как сжимаемость нефти значительно выше (в 15-20 раз) сжимаемости воды, вследствие чего значительная часть цементного раствора попадает в нефтеносный коллектор. Но известно, что пьезопроводность (величина обратно пропорциональная сжимаемости и вязкости) водоносных пластов превышает пьезопроводность нефтеносных пластов в десятки раз, поэтому при одновременном гидродинамическом возмущении в скважине водяных и нефтяных пластов глубина и уровень воздействия на водоносные пласты будет намного выше этих показателей, чем в нефтяных пластах. Используя специальные технологические приемы, заключающиеся в медленном и плавном повышении давления в скважине над пластовым и резком сбросе репрессии, получается относительно более разреженная зона в водоносных пластах вокруг скважины, чем в нефтеносных, в которую при возобновлении репрессии появляется возможность задавить основную часть закачиваемого цементного раствора. То есть предлагается создавать гидроимпульс на пласты путем остановки движения цементного потока и дальнейшего резкого его возобновления с помощью устанавливаемых в колонне труб срезных стопорных элементов.
На фиг.1 показаны общая схема и устройство для осуществления заявленного способа; на фиг.2 часть устройства, детально раскрывающая крепление втулок; на фиг. 3 конструктивное выполнение цементировочной пробки; на фиг.4 ловитель.
Устройство для осуществления способа включает колонну труб 1 и помещенный в ней посадочный узел А (фиг.1), выполненный в виде ряда последовательно установленных в колонне труб втулок 2, 3, 4, заштифтованных в исходном положении срезными стопорными элементами 5, 6, 7. У втулок 2, 3, 4 верхний и нижний торцы выполнены таким образом, чтобы они могли лучшим образом взаимодействовать друг с другом и с цементировочной пробкой 8. Это может быть достигнуто путем выполнения, например, конусных поверхностей на торцах втулок 2, 3, 4 и цементировочной пробки 8. Втулки 2, 3, 4 имеют уплотнения 9, что обеспечивает их герметичность по отношению к внутренней поверхности колонных труб 1. В соединительных элементах 10 колонны труб 1 выполнены кольцевые расточки под опорные кольца 11. Кольцевые расточки имеют опорные выступы со скосами 12.
Втулки 2, 3, 4 заштифтованы в опорных кольцах 11. Скосы 10 позволяют образовать свободную поверхность на нижних торцах опорных колец 11, которая необходима для успешного извлечения опорных колец 11 из кольцевых расточек соединительных элементов 10 при демонтаже устройства. Опорные кольца 11 в верхней части имеют центрирующие фаски. На нижнем конце колонны труб 1 установлен ловитель 13, выполненный в виде патрубка 14 с радиальными отверстиями 15. В верхней части ловителя 13 (см. фиг.4) имеется муфта 16 для присоединения к колонне труб 1.
В нижней части ловителя 13 закреплен стакан 17 с осевым отверстием 18.
Цементировочная пробка 8 выполнена многосекционной из набора манжет 19 и ступенчатых корпусов 20, связанных резьбовыми шпильками 21 между собой. При этом резьбовые шпильки 21 свободно пропущены через осевые отверстия манжет (например, резиновых) 19 и стягивают между собой ступенчатые корпуса 20, головную и хвостовую части 22, 23.
Способ осуществляется следующим образом.
Колонну труб 1 предварительно оборудуют ловителем 13, посадочным узлом А и первым, вторым и третьим срезными стопорными элементами 5, 6, 7. Срезные стопорные элементы 5, 6, 7 устанавливают в колонне труб 1 на глубине от ее низа из расчета обеспечения задавливания в водоносные пласты 24 по 0,5-1,0 м3 цементного раствора 25 в промежутке между двумя срезами срезных стопорных элементов 5, 6, 7. На фиг.1 позициями 26, 27, 28 показаны продавочная жидкость, скважина и нефтеносный пласт соответственно. Глубину установки первого срезного стопорного элемента 2 определяют из выражения
H где β упругость (сжимаемость) водоносных пластов в зоне перфорации, Па-1 (β0,5 х 10-9 Па-1);
χ пьезопроводность, м2/с (по данным исследований, пьезопроводность для воды равна χв 2 м2/с, а для нефти κн 0,04 м2/с, т.е. в 50 раз меньше);
t время повышения давления продавочной жидкости с момента посадки цементировочной пробки на первый срезной стопорный элемент до момента его среза, с;
Δ Р среднее значение снижения давления в зоне гидродинамического возмущения водоносных пластов, МПа (зависит от многих факторов и определяется по справочным данным, например, Мительман Б.И. Справочник по гидравлическим расчетам в бурении. М. Гостоптехиздат, 1963, с.253);
h мощность водоносных пластов, м;
d внутренний диаметр колонны труб, м.
Второй срезной стопорный элемент 3 устанавливают в колонне труб 1 на глубине от ее низа, равной половине глубины установки первого срезного стопорного элемента 2.
Третий срезной стопорный элемент 4 устанавливают на нижнем конце колонны труб 1 над ловителем 13. Закачивают цементный раствор 25 в колонну труб 1 с использованием цементировочного агрегата (ЦА). В колонну труб 1 спускают цементировочную пробку 8. В процессе задавливания цементного раствора 25 в заколонное пространство разделительная цементировочная пробка 8, продвигаясь по колонне труб 1, садится на первый срезной стопорный элемент 2. Движение потока цементного раствора 25 прекращается, но закачка продавочной жидкости 26 продолжается до величины расчетного значения давления среза срезного стопорного элемента 2.
Поднятие давление осуществляется около 10 с, в течение которых происходит резкий спад репрессии на воздействуемые пласты за счет исчезновения гидродинамических давлений потоку в кольцевом пространстве, т.е. осуществляется первый полупериод гидроимпульсивного воздействия на пласт 24. Далее происходит срез штифтов 5, и резко возобновляется движение потока цементного раствора 25 нарастанием градиентов давления в кольцевом пространстве, т.е. осуществляется второй полупериод гидроимпульсного воздействия.
Повышение давления и срез штифтов 5 в первом элементе 2 является информативным сигналом о количестве закачанной продавочной жидкости 26. Далее закрывают затрубное пространство и продолжают закачивать продавочную жидкость 26 в колонну труб 1, задавливая в пласты 24 расчетное количество цементного раствора 25. Далее цементировочная пробка 8 вместе со срезанным стопорным элементом 2 садится на второй срезной стопорный элемент 3. После его среза создается импульс, и они оба с цементировочной пробкой 8 движутся далее, задавливая в пласт 24 вторую порцию цементного раствора 25.
Повышение давления на третьем срезанном стопорном элементе 4 колонны труб 1, когда сядут два предыдущих и цементировочная пробка 8, показывает о полном выдавливании цементного раствора 25 из колонны труб 1. Далее срезаются штифты 7 в третьем срезном стопорном элементе 4, и создается третий импульс, после чего задавку цементного раствора 25 прекращают (цементировочная пробка 8 и три срезных стопорных элемента 5, 6, 7 попадают в ловитель 13), колонну труб 1 приподнимают и промывают.
Наиболее подходящей тампонажной смесью для цементного раствора, предназначенного для изоляции водопритоков (водоносных пластов), является материал, который в процессе твердения дает напрягающий цементный камень. Известно много расширяющихся тампонажных составов с добавками окиси кальция, окиси магния, сульфоалюмината кальция, добавок порошкообразного алюминия и пр. Но более эффективной добавкой для получения расширяющихся тампонажных материалов является добавка полых стеклянных микросфер (ПСМС).
При закачивании (задавливании) цементного раствора оболочки ПСМС под воздействием избыточного давления деформируются, уменьшаясь в объеме, поскольку внутри микросфер давление газа было равно атмосферному. После задавки цементного раствора и снятия избыточного давления микросферы, увеличиваясь в объеме за счет деформации оболочки, создают напряженное состояние образующегося цементного камня.
Пример расчета глубины установки срезных стопорных элементов.
Способность водоносных пластов (пропластков) принять некоторый объем Δ V цементного раствора можно выразить следующей зависимостью:
Δ V β · V · Δ P, где V объем зоны возмущения, м3;
V π · R2 ·h, где R радиус зоны возмущения, м;
R 2
Таким образом, глубина установки первого (верхнего) срезного стопорного элемента определится из выражения:
H
Исходные данные:
d 0,062 м; β 0,5·10-9 Па-1; κ 2 м2/с;
t 10 c; Δ P 1 МПа; h 3 м.
H 120 м
Таким образом, первый (верхний) срезной стопорный элемент устанавливается на глубине 120 м от низа колонны труб ⊘ 73 мм (например, НКТ).
При условии закачки цементного раствора на равновесие до импульсного воздействия объем его в колонне ⊘ 168,3·8,9 мм составит V [0,15052 (0,0732 x x 0,0622)]·0,785·120 1,99 м3 2 м3.
Второй (средний) срезной стопорный элемент 3 устанавливают на высоте 60 м от низа колонны труб 1. Третий (нижний) срезной стопорный элемент 4 устанавливается на конце колонны труб над ловителем 13.
Использование изобретения позволяет повысить надежность изоляционных работ, снизить расход цементного раствора, чему способствует простота конструкции устройства, с помощью которого может быть реализован предлагаемый способ.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СЕЛЕКТИВНОЙ ИЗОЛЯЦИИ ПРОДУКТИВНОГО ПЛАСТА ПРИ ЦЕМЕНТИРОВАНИИ ЭКСПЛУАТАЦИОННОЙ КОЛОННЫ ТРУБ В СКВАЖИНЕ | 1993 |
|
RU2087674C1 |
Способ цементирования эксплуатационной колонны труб в скважине | 1990 |
|
SU1798483A1 |
СПОСОБ ОЧИСТКИ СКВАЖИНЫ | 1995 |
|
RU2061174C1 |
УСТРОЙСТВО ДЛЯ РАЗОБЩЕНИЯ ПЛАСТОВ | 2000 |
|
RU2182958C2 |
Способ крепления потайной обсадной колонны ствола с вращением и цементированием зоны выше продуктивного пласта | 2020 |
|
RU2745147C1 |
ВЯЗКОУПРУГАЯ КОМПОЗИЦИЯ ДЛЯ ТЕХНОЛОГИЧЕСКОЙ ОБРАБОТКИ ЭКСПЛУАТАЦИОННЫХ СКВАЖИН | 1995 |
|
RU2061171C1 |
УСТРОЙСТВО ДЕПРЕССИОННОЙ ОЧИСТКИ СКВАЖИНЫ | 1995 |
|
RU2099506C1 |
СПОСОБ ЭКСПЛУАТАЦИИ ГЛУБИННОНАСОСНОЙ УСТАНОВКИ | 1995 |
|
RU2061175C1 |
УСТРОЙСТВО ДЛЯ СТУПЕНЧАТОГО ЦЕМЕНТИРОВАНИЯ ОБСАДНОЙ КОЛОННЫ | 2009 |
|
RU2400618C1 |
УСТРОЙСТВО ДЛЯ СПУСКА, КРЕПЛЕНИЯ И ЦЕМЕНТИРОВАНИЯ ХВОСТОВИКА В БОКОВОМ СТВОЛЕ СКВАЖИНЫ | 2017 |
|
RU2658154C1 |
Использование: в нефтедобывающей промышленности при изоляции водоносных и нефтеносных пластов, устранения дефектов цементного кольца вокруг обсадных труб. Обеспечивает повышение надежности изоляционных работ, упрощения конструкции устройства и снижение расхода цементного раствора. Сущность изобретения: по способу колонну труб до ее спуска оборудуют внутри ловителем и тремя последовательно установленными над ним по глубине срезными стопорными элементами. Первый из этих элементов устанавливают на глубине, определяемой из выражения, приведенного в формуле изобретения, второй срезной стопорный элемент устанавливают на расстоянии от низа колонны труб, равном половине глубины установки первого срезного стопорного элемента, а третий срезной стопорный элемент устанавливают в нижней части и из расчета обеспечения задавливания в водоносные пласты между его срезом и срезом второго стопорного элемента по 0,5 - 1 м 3 цементного раствора. Затем осуществляют спуск колонны труб в скважину. Закачивают цементный раствор и продавочную жидкость в колонну труб с применением цементировочной пробки. Продавливают цементный раствор в заколонное пространство. Одновременно в скважине возмущают гидродинамические импульсы давления. Это осуществляют путем повышения и резкого снижения давления. Повышение давления осуществляют после посадок цементировочной пробки на очередные срезные стопорные элементы. Резкое снижение давления осуществляют после среза стопорных элементов. Устройство по способу включает колонну труб и помещенный в ней насадочный узел, ряд последовательно установленных по длине труб срезных стопорных элементов, цементировочную пробку, ловитель и опорные кольца. Колонна труб в ее соединительных элементах имеет кольцевые расточки под опорные кольца. Посадочный узел заштифтован в опорных кольцах и выполнен в виде ряда последовательно установленных в колонне втулок. Они заштифтованы срезными стопорными элементами и выполнены с возможностью взаимодействия друг с другом. 2 с. и 5 з. п. ф-лы, 4 ил.
где β упругость (сжимаемость) водоносных пластов в зоне перфорации, Па-1(β = 0,5•10-9 Па-1);
χ пьезопроводность, м2/с (пьезопроводность для воды χв= 2 м2/c, а пьезопроводность для нефти χн= 0,04 м2/c;
t время повышения давления продавочной жидкости с момента посадки цементировочной пробки на первый срезной стопорный элемент до момента его среза, с;
ΔP среднее значение снижения давления в зоне гидродинамического возмущения водоносных пластов, МПа;
h мощность водоносных пластов, м;
d внутренний диаметр колонны труб, м,
второй стопорный элемент устанавливают на расстоянии от низа колонны труб, равном половине глубины установки первого срезного стопорного элемента, а третий срезной стопорный элемент устанавливают над ловителем и из расчета обеспечения задавливания в водоносные пласты между его срезом и срезом второго стопорного элемента по 0,5 1 м3 цементного раствора, при этом повышение давления для возмущения в скважине гидродинамических импульсов осуществляют после посадок цементировочной пробки на очередные срезные стопорные элементы, а его резкое снижение осуществляют после среза этих стопорных элементов.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, авторское свидетельство N 1798484, кл | |||
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
SU, авторское свидетельство N 1196493, кл | |||
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
SU, авторское свидетельство N 1059135, кл | |||
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Авторы
Даты
1996-05-27—Публикация
1995-10-03—Подача