СПОСОБ ПАРАМЕТРИЧЕСКОЙ ГЕНЕРАЦИИ ПЕРИОДИЧЕСКИХ КОЛЕБАНИЙ Российский патент 1996 года по МПК H01S3/00 

Описание патента на изобретение RU2062538C1

Изобретение относится к квантовой электронике и может быть использовано для генерации в широком диапазоне длин волн светового когерентного излучения.

Известны способы генерации когерентного светового излучения с использованием различных типов лазеров. Однако при этом для каждого конкретного типа лазера длина волны генерируемого света находится в узком диапазоне, определяемом используемой в лазере активной средой. Кроме того, КПД многих типов лазеров, работающих в непрерывном режиме, достаточно низок и составляет в настоящее время доли процента.

Наиболее близок к предлагаемому изобретению способ генерации когерентного светового излучения, используемый в параметрических генераторах резонаторного [1] и волноводного типа [2] Во всех этих системах используется один и тот же способ передачи энергии источника питания генерируемому излучению, при котором в качестве накачки используется когерентное оптическое излучение, длина волны которого сравнима с длиной волны генерируемого. Недостатком этого способа является необходимость в дорогостоящем источнике питания, который должен выдавать когерентное оптическое излучение.

Предлагаемый способ позволяет получить когерентное световое излучение в широком заранее выбранном диапазоне длин волн. При этом в качестве источника питания используется обычный высокочастотный генератор, энергия которого горазда дешевле энергии когерентного светового излучения, требуемого в указанном прототипе.

Сущность изобретения состоит в следующем. При помощи параметрического реактивного преобразователя с повышением частоты осуществляют преобразование оптического сигнала с несущей в оптический сигнал с удвоенной частотой 2ω=ω+qΩ,, где частота накачки , коэффициент умножения частоты накачки (q целое). В соответствии с соотношениями Мэнли-Роу, определяющими связь между мощностями и частотами входных и выходных сигналов в произвольном реактивном преобразователе [3] мощность результирующего сигнала с частотой 22ω при отсутствии в системе потерь в 2 раза больше мощности исходного сигнала с частотой w за счет мощности, поступающей от накачки с частотой W...

Результирующий сигнал подают на известный вырожденный параметрический делитель частоты на 2 [4] На его выходе частота сигнала снова оказывается равной w, а мощность выходного сигнала теоретически может быть равна мощности входного сигнала с частотой 22ω.. Полученный сигнал с частотой ω подают на вход рассмотренного преобразователя частоты вверх, замыкая таким образом петлю обратной связи. В идеальном случае при отсутствии потерь коэффициент усиления по мощности в рассматриваемой системе равен 2. В реальном случае с учетом потерь этот коэффициент должен быть больше 1. При этом в системе могут быть возбуждены и поддерживаться колебания на частоте w за счет энергии высокочастотной накачки с частотой W. Генерация может быть осуществлена в любом частотном диапазоне, где может быть обеспечено выполнение указанного выше условия, чтобы коэффициент усиления в замкнутом петле обратной связи был больше 1.

В световом диапазоне в качестве параметрического преобразователя с повышением частоты могут быть использованы известные устройства, обеспечивающие увеличение несущей света в 2 раза [5] а в качестве вырожденного параметрического делителя частоты на 2 известный интегрально-оптический генератор второй гармоники [6] в котором обеспечен фазовый синхронизм между распространяющимися по световоду сигналами с частотами 2ω и w и который представляет собой канальный световод длиной около 1 см в нелинейной среде типа LiNbO3.

Литература
1. Шен И.Р. Принципы нелинейной оптики. М. Мир, 1989, стр. 128 132.

2. Новые физические принципы оптической обработки информации. М. Наука, 1990, стр. 98 99.

3. Хаус Х. Волны и поля в оптоэлектронике. М. Мир, 1989, стр. 132.

4. Шен И.Р. Принципы нелинейной оптики. М. Мир, 1989, стр. 132.

5. Торчигин В.П. О возможности использования взаимодействия акустических и световых волн в волоконных световодах для генерации коротких световых импульсов. Квантовая электроника, том 20, п. 3 с. 276 282 (1983).

6. Yamada M. Kishima K. Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direcct alectron beam lithography at room temperature. Electronics Letters, 1991, v.27, no 10, pp. 828 830.

Похожие патенты RU2062538C1

название год авторы номер документа
ПАРАМЕТРИЧЕСКИЙ УСИЛИТЕЛЬ И ПРЕОБРАЗОВАТЕЛЬ ДЛИНЫ ВОЛНЫ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ 1995
  • Торчигин Владимир Павлович
RU2085984C1
ОДНОПУЧКОВАЯ МИКРОСПЕКТРОСКОПИЯ КОГЕРЕНТНОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА НА ОСНОВЕ ВОЛОКОННО-ОПТИЧЕСКОГО СИНТЕЗАТОРА УПРАВЛЯЕМЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ СВЕРХКОРОТКИХ ИМПУЛЬСОВ 2007
  • Желтиков Алексей Михайлович
RU2360270C1
СПОСОБ САМООРГАНИЗАЦИИ ОПТИЧЕСКИ АКТИВНОГО АНСАМБЛЯ ДИАМАГНИТНЫХ НАНОЧАСТИЦ ЭЛЕКТРОН-ИОН 2016
  • Лопасов Владимир Павлович
RU2655052C1
СПОСОБ СИНТЕЗА ДИАМАГНИТНОЙ ОПТИЧЕСКИ АКТИВНОЙ СРЕДЫ 2006
  • Лопасов Владимир Павлович
RU2320979C2
СПОСОБ ФИЛЬТРАЦИИ ФОТОНОВ ОТ ОСТАТОЧНОГО ИЗЛУЧЕНИЯ КОГЕРЕНТНОЙ НАКАЧКИ 2021
  • Сайгин Михаил Юрьевич
  • Дьяконов Иван Викторович
  • Страупе Станислав Сергеевич
  • Кулик Сергей Павлович
RU2783222C1
СПОСОБ НЕЛИНЕЙНОГО ВНУТРИРЕЗОНАТОРНОГО ПРЕОБРАЗОВАНИЯ ДЛИНЫ ВОЛНЫ В ЛАЗЕРЕ С ПРОДОЛЬНОЙ НАКАЧКОЙ 2019
  • Горбунков Михаил Валериевич
  • Кострюков Павел Владимирович
  • Тункин Владимир Григорьевич
RU2726915C1
СХЕМЫ ГЕНЕРАЦИИ МОДИФИЦИРОВАННЫХ ГХЦ СОСТОЯНИЙ 2016
  • Гостев Павел Павлович
  • Магницкий Сергей Александрович
RU2626167C1
ИЗМЕРИТЕЛЬ МОЩНОСТИ ИЗЛУЧЕНИЯ ИМПУЛЬСНЫХ ОПТИЧЕСКИХ КВАНТОВЫХ ГЕНЕРАТОРОВ 2008
  • Меньших Олег Федорович
RU2386933C1
ПЕРЕСТРАИВАЕМЫЙ ЛАЗЕР 1995
  • Хулугуров В.М.
  • Ржечицкий А.Э.
  • Олейников Е.А.
RU2173013C2
СПОСОБ ДЕТЕКТИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Китаева Галия Хасановна
  • Пенин Александр Николаевич
  • Тучак Антон Николаевич
  • Якунин Павел Владимирович
RU2448399C2

Реферат патента 1996 года СПОСОБ ПАРАМЕТРИЧЕСКОЙ ГЕНЕРАЦИИ ПЕРИОДИЧЕСКИХ КОЛЕБАНИЙ

Использование: в квантовой электронике. Сущность изобретения: в способе используется взаимодействие сигналов СВЧ частоты с оптической волной, в результате которого частота и мощность оптической волны возрастают приблизительно в 2 раза. Часть мощности этой волны поступает в качестве накачки в вырожденный параметрический делитель частоты на 2 для получения оптической волны, используемой при преобразовании частот. Устройство волноводного типа, в котором используется этот способ, позволяет получить генерацию когерентного оптического излучения при накачке СВЧ диапазона.

Формула изобретения RU 2 062 538 C1

Способ параметрической генерации периодических колебаний, при котором на вход параметрического преобразователя частоты подают в качестве питания колебания с частотой Ω, отличающийся тем, что на входы параметрического преобразователя с повышением частоты дополнительно подают колебания с частотой ω где w>>Ω, получают на выходе колебания с частотой ω++qΩ= 2ω, где q - целое, уменьшают частоту этого колебания в 2 раза с помощью вырожденного параметрического делителя частоты на 2 и большую часть мощности полученного излучения снова подают на вход преобразователя с повышением частоты, замыкая тем самым петлю обратной связи для сигналов с частотой ω, а оставшуюся часть мощности используют в качестве выхода генерируемых колебаний.

RU 2 062 538 C1

Авторы

Торчигин Владимир Павлович

Даты

1996-06-20Публикация

1992-04-29Подача