ОСВЕТИТЕЛЬ СПЕКТРАЛЬНОГО ПРИБОРА (ВАРИАНТЫ) Российский патент 1996 года по МПК G01J3/10 

Описание патента на изобретение RU2065586C1

Изобретение относится к области спектрального приборостроения, более конкретно к осветителям спектральных приборов, используемым совместно с монохроматором и устройством спектрофотометрирования непосредственно или через систему согласования с возможностью симметричного двухканального исполнения и коммутации каналов.

Известен осветитель спектрального прибора, содержащий оптически связанные объектив, излучатель и диафрагму при сопряжении излучателя через объектив с диафрагмой [1]
Недостатком [1] является ограниченная энергетическая эффективность, определяемая полем диафрагмы и апертурой объектива, согласованными с монохроматором. Повышение энергетической эффективности за счет увеличения температуры излучателя ограничено предельным значением ≈1400oC, определяемым термоактивностью его поверхности в воздушной среде, кроме того, повышение температуры сопровождается возрастанием энергопотребления, а также уровня коротковолнового мешающего излучения, снижающего точность фотометрирования.

Известен осветитель спектрального прибора с повышенной энергетической эффективностью, содержащий оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и диафрагму при установке оптической оси сферического зеркала, проходящей через центр объектива, по касательной к излучателю и совмещении точки касания с центром кривизны сферического зеркала [2]
Недостатком [2] является повышение энергетической эффективности только при минимальном, определяемом размером излучателя разрешении, не реализуемое при среднем и максимальном разрешении.

Наиболее близким, принимаемым за прототип, является осветитель спектрального прибора, содержащий оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную через объектив с излучателем диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала и совмещении центров излучателя и кривизны сферического зеркала [3]
В осветителе [3] излучатель должен быть прозрачен для прохождения излучения, формируемого сферическим зеркалом, чем повышается его энергетическая эффективность за счет суммирования излучений, формируемых сферическим зеркалом и объективом.

Однако по закону Кирхгофа непоглощающий излучатель не возможен, и, следовательно, такой осветитель в чистом виде не работоспособен. Поэтому фактической областью его применения является использование излучателей с несплошным полем излучения с возможностью заполнения неизлучающих промежутков оптическим изображением излучающих, образуемым сферическим зеркалом, или частично поглощающего излучателя сплошного поля с коэффициентом поглощения К в диапазоне 0 <К <1.

В обоих случаях максимально реализуемая энергетическая эффективность не превышает достигаемую и без сферического зеркала с помощью излучателя сплошного поля с коэффициентом поглощения К, близким к 1.

Изобретение решает задачу повышения энергетической эффективности прототипа с излучателем сплошного поля с близким к 1 коэффициентом поглощения К при максимальном и среднем разрешении.

Это достигается благодаря тому, что согласно формуле изобретения в известном осветителе спектрального прибора, содержащем оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную с излучателем через объектив диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала, центр кривизны сферического зеркала расположен между сферическим зеркалом и излучателем при выполнении радиуса кривизны сферического зеркала в соотношении 0,3 от расстояния между сферическим зеркалом и излучателем или центр кривизны сферического зеркала расположен между излучателем и объективом при выполнении радиуса кривизны сферического зеркала в соотношении 1,15 от расстояния между сферическим зеркалом и излучателем.

Оба варианта найденного технического решения обладают новизной, изобретательским уровнем и промышленной применимостью, а перечисленная совокупность их существенных признаков обеспечивает получение технического результата, выражаемого повышением энергетической эффективности осветителя при максимальном и среднем разрешении. Это достигается благодаря более полному, чем в прототипе, использованию излучения, формируемого излучателем, включающему не только его часть, идущую в пределах передней апертуры объектива, но и часть излучения, идущую в обратном направлении.

На фиг. 1 показана оптическая схема 1-го варианта осветителя; на фиг. 2
оптическая схема 2-го варианта.

Осветитель фиг. 1 в 1-м варианте исполнения содержит оптически связанные объектив 1, сферическое зеркало 2, расположенный между ними излучатель 3 и сопряженную с излучателем 3 через объектив 1 диафрагму 4 с определяемой используемым разрешением эффективной шириной dэф при установке центров 5 излучателя 3 и 6 объектива 1 на оптической оси 7 сферического зеркала 2, проходящей через его центр 8 и центр 9 кривизны. Центр 9 кривизны расположен между сферическим зеркалом 2 и излучателем 3 при выполнении радиуса R кривизны сферического зеркала 2 в соотношении 0,8 от расстояния S между сферическим зеркалом 2 и излучателем 3.

Осветитель функционирует следующим образом. При включении излучателя 3 излучение, формируемое лучами 10, 11, направляется в объектив 1, образующий лучами 12, 13 изображение 14 излучателя 3, совмещенное с диафрагмой 4. Одновременно излучение, формируемое лучами 15, 16, отражается от сферического зеркала 2, образующего лучами 17, 18 промежуточное изображение 19 излучателя 3, расположенное между сферическим зеркалом 2 и его центром 9 кривизны на расстоянии ΔS от излучателя 3, затем идет в объектив 1, образующий лучами 20, 21 вторичное изображение 22 излучателя 3, расположенное между объективом 1 и диафрагмой 4 на расстоянии ΔS′ от нее, связанном с ΔS соотношением ΔS′ = V2•ΔS, где V линейное увеличение объектива 1.

Поток излучения в обоих изображениях 14 и 22 суммируется на диафрагме 4, чем и определяется результирующее повышение энергетической эффективности.

Выбор соотношения R(S) определяется максимальным значением дополнительного потока излучения, образуемого сферическим зеркалом 2 и приплюсовываемого к основному потоку, идущему в объектив 1 и принимаемому за 1.

По формуле Аббе для сферического зеркала
2/R 1/S + 1/S',
где S' расстояние от сферического зеркала 2 до промежуточного изображения 19,
с учетом S′ = S - ΔS имеем:

где a = R/S.
Откуда, для конкретных α:

Выбор α, определяемый максимальной энергетической эффективностью, ограничивается виньетированием излучения, формируемого сферическим зеркалом 2 на излучателе 3 и диафрагме 4. Виньетирование излучателем 3 растет с уменьшением ΔS, а диафрагмой 4 с увеличением ΔS, пропорциональным ΔS′, т.е. оба виньетирования имеют противоположный характер зависимости от ΔS, чем и определяется возможность оптимизации выбираемого значения α.
Стандартные значения применяемых в осветителе параметров составляют: линейное увеличение V объектива ≈1,3x; входное относительное отверстие ≈1:4; выходное, соответствующее входному относительному отверстию монохроматора, ≈1: 5; диаметр А излучателя ≈4 мм. Оптимальное значение S сферического зеркала 2 составляет ≈100-150 мм и определяется: для Smin интенсивностью загрязнения сферического зеркала термическим испарением с открытой поверхности излучателя 3 (особенно при вакуумном исполнении осветителя); для Smax габаритами осветителя. Примем в качестве среднего оптимального значения Scp ≈120 мм, тогда для α1, α2, α3 получим:

Виньетирование излучателем 3, расположенным на расстоянии ΔS от плоскости фокусировки излучения с относительным отверстием ≈1:4 составляет 4A/ΔS, а пропускание П = 1 - (4A/ΔS) для разных ΔS:

Виньетирование излучения диафрагмой 4, расположенной на расстоянии ΔS′ от вторичного изображения 22, не вызывает снижения энергетической эффективности при выполнении соотношения:

где A' ширина вторичного изображения 22, dэф эффективная ширина диафрагмы 4, соответствующая используемому разрешению, В выходное относительное отверстие объектива 1, допускаемое смещение плоскости фокусировки, т.е. при
Откуда, для A' ≈6 мм, В ≈1:5, максимального и среднего разрешения, соответствующих dэф ≅ 1 мм, имеем:
При выходе за пределы допускаемого смещения энергетическая эффективность снижается и определяется значением пропускания П′(ΔS′):

Откуда для

Суммарное пропускание Пc, учитывающее оба виньетирования, составляет:

т. е. максимум энергетической эффективности соответствует установленному значению α2 = 0,8, а результирующее повышение энергетической эффективности предлагаемого осветителя в сравнении с прототипом составляет ≈25%
Осветитель фиг. 2 во 2-м варианте исполнения содержит оптически связанные объектив 1, сферическое зеркало 2, расположенный между ними излучатель 3 и сопряженную с излучателем 3 через объектив 1 диафрагму 4 с определяемой используемым разрешением эффективной шириной dэф при установке центров 5 излучателя 3 и 6 объектива на оптической оси 7 сферического зеркала 2, проходящей через его центр 8 и центр 9 кривизны. Центр 9 кривизны расположен между излучателем 3 и объективом 1 при выполнении радиуса R кривизны сферического зеркала в соотношении 1,15 от расстояния S между сферическим зеркалом 2 и излучателем 3.

Осветитель функционирует следующим образом. При включении излучателя 3 излучение, формируемое лучами 10, 11, направляется в объектив 1, образующий лучами 12, 13 изображение 14 излучателя 3, совмещенное с диафрагмой 4. Одновременно излучение, формируемое лучами 15, 16, отражается от сферического зеркала 2, образующего лучами 17, 18 промежуточное изображение 19 излучателя 3, расположенное между центром 9 кривизны сферического зеркала 2 и объективом 1 на расстоянии ΔS от излучателя 3, затем идет в объектив 1, образующий лучами 20, 21 вторичное изображение 22 излучателя 3, расположенное за диафрагмой 4 на расстоянии ΔS′ от нее, связанном с ΔS соотношением ΔS′ = V2•ΔS, где V линейное увеличение объектива 1.

Поток излучения в обоих изображениях 14 и 22 суммируется на диафрагме 4, чем и определяется результирующее повышение энергетической эффективности.

Выбор соотношения R(S) определяется максимальным значением дополнительного потока излучения, образуемого сферическим зеркалом 2 и приплюсовываемого к основному потоку, идущему в объектив 1 и принимаемому за 1.

По формуле Аббе для сферического зеркала
2/R 1/S + 1/S,
где S' расстояние от сферического зеркала 2 до промежуточного изображения 19, с учетом S′ = S+ΔS имеем:

где a = R/S
Откуда для конкретных α:

Дальнейшее рассмотрение, определяющее выбор α2 = 1,15 при максимальном повышении энергетической эффективности, полностью аналогично приведенному в варианте 1.

Реализуемый в предлагаемом осветителе энергетический выигрыш, составляющий ≈25% равносилен для наиболее энергетически критичной дальней ИК-области спектра (с длинами волн свыше 15 мкм, в области действия закона Релея-Джинса) такому же процентному увеличению температуры излучателя, т.е. с ≈1400oC до ≈1750oC, но достигаемому без фактического ее увеличения и возрастания энергопотребления, т.е. без форсирования рабочего режима эксплуатации и уменьшения его ресурса, а также без соответствующего этому повышению температуры роста уровня мешающего излучения, снижающего точность фотометрирования.

И, наоборот, при заданном уровне излучения предлагаемый осветитель обеспечивает возможность снижения рабочей температуры его излучателя с ≈1400oC до ≈1050oC, чем достигается как снижение уровня энергопотребления и соответствующее увеличение ресурса эксплуатации, так и уменьшение уровня мешающего излучения и соответствующее этому повышение точности фотометрирования в спектральном приборе, совместно с которым осветитель используется.

Источники информации, использованные при подготовке описания
1. Спектрометр инфракрасный ИКС-12. Инструкция к пользованию. ЛОМО, 1966, с. 5-6.

2. Авторское свидетельство СССР N 1571418, кл. G 01 J 3/02.

3. Зайдель А.Н. Островская Г.В. Островский Ю.И. Техника и практика спектроскопии. М. Наука, 1976, с. 132, прототип.

Похожие патенты RU2065586C1

название год авторы номер документа
СПЕКТРАЛЬНЫЙ ПРИБОР И ОСВЕТИТЕЛЬ ДЛЯ НЕГО 1993
  • Сомсиков А.И.
RU2069322C1
УСТРОЙСТВО ДЛЯ СПЕКТРОФОТОМЕТРИРОВАНИЯ ЖИДКИХ ОБРАЗЦОВ 1992
  • Сомсиков А.И.
RU2065597C1
ОБЪЕКТИВ 1992
  • Сокольский М.Н.
  • Лапо Л.М.
  • Митрошин В.Т.
  • Кузин В.П.
RU2035753C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ТОЛЩИНЫ ПЛЕНОК МНОГОСЛОЙНОГО ОПТИЧЕСКОГО ПОКРЫТИЯ В ПРОЦЕССЕ ЕГО НАНЕСЕНИЯ ОСАЖДЕНИЕМ В ВАКУУМНОЙ КАМЕРЕ 1991
  • Александров О.В.
  • Кацнельсон Л.Б.
RU2025657C1
ОСВЕТИТЕЛЬ СПЕКТРОФОТОМЕТРЫ 1996
  • Сомсиков А.И.
RU2100784C1
АХРОМАТИЧЕСКИЙ ИММЕРСИОННЫЙ МИКРООБЪЕКТИВ БОЛЬШОГО УВЕЛИЧЕНИЯ 1991
  • Фролов Д.Н.
RU2012908C1
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ОБЪЕКТИВ (ВАРИАНТЫ) 2002
  • Потапова Н.И.
  • Стариков А.Д.
  • Цветков А.Д.
RU2212695C1
БЕЗРЕФЛЕКСНЫЙ МИКРООБЪЕКТИВ БОЛЬШОГО УВЕЛИЧЕНИЯ ДЛЯ ОТРАЖЕННОГО СВЕТА 1992
  • Фролов Д.Н.
RU2012909C1
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ОБЪЕКТИВ 2022
  • Медведев Александр Владимирович
  • Гринкевич Александр Васильевич
  • Князева Светлана Николаевна
RU2798087C1
УСТРОЙСТВО КРЕПЛЕНИЯ ЗЕРКАЛА ТЕЛЕСКОПА 1992
  • Маламед Е.Р.
  • Правоторов Н.Б.
  • Елкин А.В.
RU2035759C1

Иллюстрации к изобретению RU 2 065 586 C1

Реферат патента 1996 года ОСВЕТИТЕЛЬ СПЕКТРАЛЬНОГО ПРИБОРА (ВАРИАНТЫ)

Использование: в спектральном приборостроении, в осветителях спектральных приборов, используемых совместно с монохроматорами и устройствами спектрофотометрирования. Сущность изобретения: в осветителе спектрального прибора, содержащем оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную с излучателем через объектив диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала, проходящей через центр сферического зеркала и центр его кривизны, центр кривизны сферического зеркала расположен между сферическим зеркалом и излучателем при выполнении радиуса кривизны сферического зеркала в соотношении 0,8 от расстояния между сферическим зеркалом и излучателем или же центр кривизны сферического зеркала расположен между излучателем и объективом при выполнении радиуса кривизны сферического зеркала в соотношении 1,15 от расстояния между сферическим зеркалом и излучателем. 2 с.п. ф-лы, 2 ил.

Формула изобретения RU 2 065 586 C1

1. Осветитель спектрального прибора, содержащий оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную с излучателем через объектив диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала, отличающийся тем, что центр кривизны сферического зеркала расположен между сферическим зеркалом и излучателем при выполнении радиуса кривизны сферического зеркала в соотношении 0,8 от расстояния между сферическим зеркалом и излучателем. 2. Осветитель спектрального прибора, содержащий оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную с излучателем через объектив диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала, отличающийся тем, что центр кривизны сферического зеркала расположен между излучателем и объективом при выполнении радиуса кривизны сферического зеркала в соотношении 1,15 от расстояния между сферическим зеркалом и излучателем.

Документы, цитированные в отчете о поиске Патент 1996 года RU2065586C1

Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
Инструкция к использованию
- Л.: ЛОМО, 1966, с
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Спектрофотометрический прибор 1987
  • Сомсиков Александр Иванович
  • Виноградов Евгений Андреевич
  • Толстой Валерий Павлович
SU1571418A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Зайдель А.Н
и др
Техника и практика спектроскопии
- М.:Наука, 1976, с
Способ получения нерастворимых лаков основных красителей в субстанции и на волокнах 1923
  • Лотарев Б.М.
SU132A1

RU 2 065 586 C1

Авторы

Сомсиков А.И.

Даты

1996-08-20Публикация

1993-06-08Подача