Изобретение относится к сельскому хозяйству, к области семеноводства, а также к области физико-химической обработки различных материалов.
Известны устройства для обработки семян электромагнитными полями, электрическим, тлеющим и плазменным разрядами, инфракрасным, ультрафиолетовым, лазерным, рентгеновским и гамма облучением.
В известном способе семена обрабатывают за 10 сут до посева электростатическим полем напряженностью 3-4,5 кВ/см3 в течение 5 с. За 5 сут до посева семена вновь подвергают обработке электростатическим полем той же напряженности, но противоположной полярности.
Недостаток устройства, используемого в этом способе, состоит в низкой эффективности действия на семена, высокой удельной энергоемкости и цикличности работы устройства.
Известно устройство для обработки семян тлеющим разрядом. Устройство представляет собой камеру с сетчатым катодом и анодом в виде корпуса камеры. Обработку семян ведут в остаточной атмосфере воздуха при давлении 3-4 мм рт. ст. напряжении 350-400 В, плотности тока 2 мА/см2 в течение 10 с.
Недостатки этого устройства: высокие энергозатраты, повышенные температуры в зоне обработки семян (до 55oС), цикличность в работе из-за необходимости охлаждения камеры путем отключения установки.
Наиболее близким по технической сущности к заявляемому устройству является устройство для обработки семян растений газовой плазмой. Устройство позволяет формировать плазменный разряд в камере между двумя внешними электродами с помощью электрического генератора. Обработку семян газовой плазмой проводят при частоте электрического разряда от 1 до 40 мГц мощности разряда от 0,003 Вт/см3, давлении неорганического газа от 0,05 мм рт.ст. и экспозиции от 5 до 300 с.
Недостатками известного устройства являются относительно низкое качество обработки семян, высокие удельные энергозатраты (до 1,5 Вт/см3), наличие факта перегрева семян при экспозиции более 30 с (температура в камере может превышать 40oС), цикличность работы из-за необходимости отключения установки для ее охлаждения и отсутствие транспортирующего механизма для непрерывной подачи семян в зону формирования плазменного разряда.
Целью изобретения является повышение качества обработки семян, снижение удельных энергозатрат, непрерывность работы устройства без перегрева и возможность стимулирования не только жизнеспособности семян, но и пищевой ценности выращиваемых из них растений.
Это достигается за счет того, что в известном устройстве, содержащем камеру, присоединенную к источнику неорганического газа, электрический генератор, вакуумную систему и электроды, один из электродов выполнен в виде полого металлического элемента с возможностью циркуляции в нем охлаждающего агента, в качестве другого электрода использован металлический корпус камеры, внутри которой размещен транспортирующий механизм, а камера имеет загрузочный и сбросовый бункеры.
Сущность изобретения состоит в том, что расположение одного из электродов внутри камеры способствует более эффективной обработке семян газовой плазмой и позволяет снизить электрическую мощность, вкладываемую в разряд. Снижение мощности разряда расширяет возможности по регулированию процессов ионизации газа и образования физиологически активных компонентов плазмы. Наличие охлаждаемого электрода обеспечивает возможность стабилизации температуры в камере обработки и поддержания в ней оптимальных условий для обработки семян при исключении необходимости цикличности в работе устройства. Непрерывность в работе обеспечивается также путем размещения в камере транспортирующего механизма и присоединения к камере загрузочного и сбросового бункеров, необходимых для загрузки и сброса семян.
Сущность предлагаемого устройства поясняется чертежом и табл. 1 и 2. На чертеже изображен общий вид устройства для плазменной обработки семян растений, в таблицах приведены результаты конкретной использования предлагаемого устройства.
Устройство состоит из металлической камеры 1, которая выполняет функции электрода, полого металлического электрода 2, который имеет геометрические размеры не более внутреннего размера камеры и выполнен с возможностью циркуляции в нем охлаждающего агента 3, загрузочного 4 и сбросового 5 бункеров для семян, транспортирующего механизма 6, электрического генератора 7, вакуумной системы 8 и источника неорганического газа 9.
Работа устройства осуществляется следующим образом. Семена 10 засыпают в загрузочный бункер 4, из которого они попадают на несущий элемент транспортирующего механизма 6 в камере 1. Транспортирующий механизм 6 подает семена в зону плазменного разряда, создаваемого электрическим генератором 7 между корпусом камеры 1 и внутренним электродом 2. Охлаждение внутреннего электрода 2 осуществляется за счет циркуляции в нем охлаждающего агента 3, например, воды. Необходимое давление в камере 1 поддерживается вакуумной системой 8, а газовый состав подачей газа от источника 9 неорганического газа. Обработанные плазмой семена 10 выгружаются из камеры 1 через сбросовый бункер 5.
Физиологически активными компонентами газоплазменной среды, создаваемой предлагаемым устройством, являются электромагнитное поле, поток слабого ультрафиолетового излучения с длиной волны 300-400 нм, электроны, ионизированные частицы газа. Устройство позволяет вести обработку семян при низкой мощности плазменного разряда, менее 0,003 Вт/см3.
Пример 1. Рапс яровой, как представитель кормовых культур. Семена рапса обрабатывали плазмой с использованием устройства прототипа и предлагаемого устройства. После плазменной обработки учитывали энергию прорастания и всхожесть семян, урожай по сухой массе рапса в фазе цветения. Результаты представлены в табл. 1.
Из табл. 1 следует, что плазменная обработка ускоряла прорастание семян и увеличивала продуктивность рапса. Наибольшей эффективностью характеризовалось предлагаемое устройство. Его использование позволило увеличить по сравнению с прототипом энергию прорастания семян на 38% всхожесть на 13% продуктивность рапса на 21% Физиологический эффект от предлагаемого устройства наблюдался на фоне существенно меньших энергозатрат.
Пример 2. На примере салата, как характерного представителя овощных культур оценивали возможность применения предлагаемого устройства для повышения пищевой ценности растений. Результаты анализа биохимического состава листьев салата представлены в табл. 2. Семена обрабатывали, как в примере 1.
Из табл. 2 следует, что в отличие от прототипа предлагаемое устройство позволяет существенно повысить пищевую ценность растений. При этом в листьях салата увеличивается содержание аскорбиновой кислоты в 3,4 раза, сахаров в 1,7 раз, кислот в 2,3 раза.
Как видно из приведенных примеров, использование предлагаемого устройства позволяет повысить качество плазменной обработки семян, снизить удельные энергозатраты в 3-10 раз, стабилизировать температуру в камере обработки и исключить вероятность перегрева семян, обеспечить непрерывность работы устройства, стимулировать не только жизнеспособность семян, но и пищевую ценность выращиваемых из них растений. Кроме того, предлагаемое устройство позволяет существенно расширить сферу стимулирования продукционного процесса сельскохозяйственных культур.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБРАБОТКИ СЕМЯН РАСТЕНИЙ | 1995 |
|
RU2076557C1 |
СПОСОБ ПРЕДПОСЕВНОГО СТИМУЛИРОВАНИЯ ЖИЗНЕСПОСОБНОСТИ И ПРОДУКТИВНОСТИ СЕМЯН СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР | 1995 |
|
RU2076556C1 |
УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ СЕМЯН ЗЕРНОВЫХ КУЛЬТУР ОТ ТВЕРДОЙ И ПЫЛЬНОЙ ГОЛОВНИ | 2005 |
|
RU2285377C1 |
УСТРОЙСТВО ДЛЯ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН РАСТЕНИЙ | 2005 |
|
RU2288561C1 |
Устройство для обеззараживания семян холодной атмосферной воздушной плазмой и способ его работы | 2022 |
|
RU2781971C1 |
СПОСОБ ОБРАБОТКИ СЕМЯН РАСТЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2317668C2 |
ВАКУУМНО-ДУГОВОЙ ИСТОЧНИК ПЛАЗМЫ | 1994 |
|
RU2072642C1 |
ВАКУУМНО-ДУГОВОЙ ИСТОЧНИК ПЛАЗМЫ | 1996 |
|
RU2098512C1 |
СПОСОБ И УСТАНОВКА ПРОМЫШЛЕННОЙ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН | 2005 |
|
RU2279202C1 |
УСТРОЙСТВО ДЛЯ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН | 2002 |
|
RU2224400C1 |
Использование: в сельском хозяйстве, в растениеводстве, а также в области физико-химической обработки материалов, в частности семян. Сущность изобретения: внутри камеры расположен полый охлаждаемый электрод 2 и транспортирующий механизм 6 для подачи обрабатываемых семян, загрузочный 4 и сбросовый 5 бункеры, причем в качестве другого электрода может быть использован металлический корпус камеры 1; электроды подключены к генератору 7. Камера сообщена с источником 9 неорганического газа и вакуумной системой 8. Применение изобретения обеспечивает повышение качества обработки семян для стимулирования их жизнеспособности и продуктивности при одновременном снижении удельных энергозатрат, а также непрерывность работы устройства без перегрева. 2 табл., 1 ил.
Устройство для плазменной обработки семян растений, содержащее камеру, подсоединенную к источнику неорганического газа, электрический генератор, электроды и вакуумную систему, отличающееся тем, что один из электродов выполнен в виде полого металлического элемента с возможностью циркуляции в нем охлаждающего агента, в качестве другого электрода использован металлический корпус камеры, в которой размещен транспортирующий механизм, а камера имеет загрузочный и сбросовый бункеры.
US, патент, 5281315, кл | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
Авторы
Даты
1997-04-10—Публикация
1995-07-05—Подача