Изобретения относятся к измерительной технике и могут быть использованы для измерения уровня жидкостей в объектах химической, энергетической, металлургической и других отраслей промышленности.
Известен способ измерения уровня жидкости тепловым уровнемером, использующим различие условий теплообмена между подогреваемым измерительным преобразователем и жидкой или газообразной фазами в объекте измерения (1). Для измерения уровня служат термопреобразователи с резистивными чувствительными элементами. При этом для уменьшения влияния условий измерения (измеряемая среда, давление, температура) на показания уровнемера кроме измерительного чувствительного элемента используют один или два вспомогательных.
В известном способе значение уровня вычисляется по отношению двух разностей сигналов, определяемых сопротивлениями двух вспомогательных и измерительного чувствительных элементов, при этом все три терморезистивных элемента имеют равные сопротивления и по ним протекают одинаковые токи.
Для реализации способа необходимо равенство всех трех чувствительных элементов, что требует их индивидуальной подгонки и создания измерительного преобразователя, либо в три раза более длинного, чем диапазон измерения, либо очень сложной конструкции.
Наиболее близким к заявленному способу по технической сущности является способ определения уровня жидких сред, включающий размещение в объекте контроля терморезистивного преобразователя в виде трех последовательно соединенных резистивных чувствительных элементов измерительного и компенсационных, разной длины и с различными сопротивлениями, находящихся в разных условиях теплообмена, и измерение падения напряжения Uи, U1, U2 на чувствительных элементах (2).
Известный способ реализуется устройством, содержащим терморезистивный преобразователь с тремя чувствительными элементами, подключенными своими токовыми и потенциальными выводами соответственно к блоку питания и вычислительному блоку (2).
Недостатком известного способа является необходимость переградуировки уровнемера при переходе с одной жидкой среды на другую, либо при различии физических свойств резистивных элементов уровнемеров разных партий.
Недостатком известного устройства является невозможность использования для разнообразных жидких сред в широком диапазоне значений температур и давлений.
Технический результат, создаваемый изобретениями, состоит в повышении точности при измерениях в любых жидких средах в широком интервале температур и давлений.
Указанный результат достигается тем, что в известном способе предварительно измеряют падение напряжения Uи0, U10, U20 на чувствительных элементах в одинаковых условиях теплообмена, определяют поправочные коэффициенты Kи, K1, K2 как отношение падения напряжения на любом из чувствительных элементов к падению напряжения на соответствующем чувствительном элементе, а значение уровня определяют по формуле:
где L длина измерительного чувствительного элемента.
Для достижения указанного результата в известном устройстве для определения уровня жидких сред резистивные чувствительные элементы размещены внутри кабеля с минеральной изоляцией в металлической оболочке, герметично закрытой с одного конца, токовые и потенциальные выводы чувствительных элементов выведены из оболочки кабеля с другого ее конца с образованием вместе с чувствительными элементами, установленными вдоль кабеля, U-образной электрической ветви, контакты которой, в точках соединения всех проводников, образованы петлями последних.
На чертеже схематично изображено устройство для определения уровня.
Устройство содержит кабельный терморезистивный преобразователь уровня, включающий герметичную металлическую оболочку 1 из нержавеющей стали, токовые выводы 2, потенциальные выводы 3, уплотненный электроизоляционный и теплопроводный порошок 4 из окиси магния, измерительный чувствительный элемент (ЧЭ) 5, компенсационные ЧЭ 6, 7 из одножильного проводника, выполненного, например, из алюмеля или никеля. Для обеспечения высокой надежности кабельного термопреобразователя уровня во время эксплуатации все соединения между ЧЭ и выводами образованы за счет петлеобразного расположения проводников. Конец преобразователя, погружаемый в измерительную среду, герметично заделан, а токовые и потенциальные выводы выходят в одну сторону, образуя U-образную электрическую ветвь. Через токовые и потенциальные выводы термопреобразователь подключается к измерительной схеме (на чертеже не показана).
Измерительная схема состоит из блока питания, коммутатора, АЦП и вычислительного блока с индикатором.
Сопротивления измерительного и компенсационных (ЧЭ) определяются конкретными размерами объектов измерения и диапазонами измерения уровня.
Для определения уровня осуществляют нормирование сигналов трех ЧЭ в одинаковых условиях теплообмена, для чего кабельный термопреобразователь размещают горизонтально в воде, воздухе, масле и т.д. При этом определяют отношения падения напряжения на каждом из трех ЧЭ относительно любого из этих падений напряжения, принятого за меру при нормировании, например, на компенсационном ЧЭ 7, всегда находящемся в жидкости U20. Тогда нормирующие (поправочные) коэффициенты будут равны соответственно:
В вычислительном блоке все сигналы с измерительного ЧЭ 5 умножаются на Kи, а с компенсационного ЧЭ 6, расположенного в газе (паровой фазе), - на K1, K2 1.
Нормирование позволяет исключить влияние на результаты измерения различия в длине, сечениях и сопротивлениях ЧЭ, которые имеют место при изготовлении преобразователя уровня.
В дальнейшем в вычислительном блоке происходит вычисление уровня по выражению:
где L длина измерительного ЧЭ (диапазон измерения уровня);
U1, U2, Uи текущие значения падения напряжения на компенсационных и измерительном ЧЭ.
Изобретения позволяют проводить измерение уровня практически для любых объектов и условий измерения, без предварительной градуировки.
Кабельное выполнение резистивного термопреобразователя позволяет получить монолитную конструкцию малых размеров (диаметр 5 7 мм), достаточно жесткую, чтобы выдержать большие давления (до 40 МПа), и достаточно гибкую, чтобы быть расположенной практически в любом объекте, изготовленную из материалов, способных работать при температурах от -200 до +1000oC.
Применение спрессованного порошкообразного материала с высокой теплопроводностью между ЧЭ и защитной оболочкой и малые размеры термопреобразователя позволяют существенно уменьшить термическое сопротивление между ЧЭ и измеряемой средой, а это позволяет увеличить разницу температур частей измерительного ЧЭ, находящихся в жидкости и в газе, и соответственно повысить точность и помехоустойчивость. Кроме того, малые размеры и хорошая теплопроводность между ЧЭ и измеряемой средой улучшают динамические свойства преобразователя.
Размещение всех выводов с одной стороны термопреобразователя позволяет использовать для его установки в объекте только одно монтажное отверстие.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ЗИНГЕРА А.М. ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ | 1991 |
|
RU2034248C1 |
ИНДУКТИВНЫЙ УРОВНЕМЕР ЖИДКОМЕТАЛЛИЧЕСКОГО ТЕПЛОНОСИТЕЛЯ | 2013 |
|
RU2558010C2 |
Устройство для измерения температуры и разности температур | 1981 |
|
SU1029018A1 |
Многоканальное устройство для измерения температуры | 1982 |
|
SU1068734A1 |
Измеритель сопротивления | 2021 |
|
RU2790045C2 |
Устройство для измерения малых разностей температур | 2020 |
|
RU2760923C1 |
ДАТЧИК УРОВНЯ И БЛОК ОБРАБОТКИ СИГНАЛОВ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2298153C2 |
Цифровой измеритель температуры | 1984 |
|
SU1232962A1 |
Устройство для измерения температуры | 1980 |
|
SU991186A1 |
Устройство для измерения температуры | 1983 |
|
SU1143996A1 |
Сущность изобретений: в объекте контроля размещают терморезистивный преобразователь в виде трех последовательно соединенных резистивных чувствительных элементов (ЧЭ) - измерительного и компенсационных, разной длины и с различными сопротивлениями. Измеряют падения напряжения на ЧЭ, по значениям которых вычисляют искомое значение уровня. Предварительно в одинаковых условиях теплообмена для всех ЧЭ определяют нормирующие коэффициенты, что позволяет исключить градуировку. Терморезистивный преобразователь выполнен в виде кабеля с минеральной изоляцией. Токовые и потенциальные выводы ЧЭ образуют вместе с ними U-образную электрическую ветвь с петлеобразным расположением проводников в местах их соединения. Термопреобразователь подключен к измерительной схеме. 2 с. п. ф-лы, 1 ил.
где L длина измерительного чувствительного элемента.
Тепловой измеритель уровня жидких сред | 1975 |
|
SU540149A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ УПРАВЛЯЮЩИХ СИГНАЛОВ С ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКОЙ | 1992 |
|
RU2097932C1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1997-06-10—Публикация
1994-04-14—Подача