УЛЬТРАЗВУКОВОЙ НИЗКОЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ Российский патент 1997 года по МПК G01N29/24 

Описание патента на изобретение RU2082163C1

Изобретение относится к области контрольно-измерительной техники и может быть использовано при дефектоскопии, структуроскопии и толщинометрии, в частности, при исследовании крупноструктурных и неоднородных материалов, таких как бетоны, пластики и горные породы.

Известен ультразвуковой преобразователь, содержащий корпус с протектором в виде усеченного конуса, пьезоэлемент и демпфер, размещенный в корпусе [1]
Однако данный преобразователь создает в исследуемом материале только продольную волну и может использоваться только в области высоких частот, что существенно ограничивает сферу его применения. Кроме того, для установки преобразователя на контролируемое изделие необходим клей или смачивающаяся жидкость.

Известен раздельно-совмещенный преобразователь, в корпусе которого установлены под углом 45 градусов излучатель поперечной волны и приемный элемент [2]
Этот преобразователь также имеет ограниченную область применения, так как может работать только в высокочастотной области и требует значительных усилий для обеспечения хорошего акустического контакта даже с гладкой поверхностью.

Наиболее близким к предложенному является ультразвуковой низкочастотный преобразователь, содержащий герметичный корпус с протектором, заполненный демпфирующей жидкостью, в котором размещен пьезоэлемент [3]
Известный преобразователь может использоваться в низкочастотной области благодаря наличию жидкого демпфера с высоким затуханием ультразвука (около 3000 дБ/м) на низких частотах. Однако его функциональные возможности и сфера использования также ограничены из-за того, что он может излучать и принимать только продольную акустическую волну, в то время как для многих применений в низкочастотной области, наряду с продольной необходима поперечная волна. Кроме того, и этот преобразователь требует применения контактных жидкостей.

Таким образом, техническим результатом, ожидаемым от использования изобретения, является расширение функциональных возможностей и области применения преобразователя за счет излучения и приема поперечных ультразвуковых волн, работы в режимах продольных или поперечных волн по выбору, а также за счет возможности использования преобразователя на шероховатой неподготовленной поверхности без использования клея и смачивающей жидкости.

Указанный результат достигается тем, что ультразвуковой низкочастотный преобразователь, содержащий герметичный корпус с демпфирующей жидкостью, пьезоэлемент, установленный внутри корпуса, и протектор, сопряженный с корпусом со стороны излучающей поверхности пьезоэлемента снабжен вторым пьезоэлементом и коммутатором с обеспечением подключения пьезоэлементов синфазно или противофазно, второй пьезоэлемент расположен в корпусе симметрично первому пьезоэлементу относительно акустической оси преобразователя, а протектор выполнен с возможностью контактирования с поверхностью контролируемого изделия в точке или по линии.

При этом высоту протектора и расстояние между центрами пьезоэлементов выбирают из соотношений:
h< λ/10, 2d>h>d/2,
где h высота протектора,
d расстояние между центрами пьезоэлементов,
λ длина акустической волны в материале протектора.

На чертеже схематично изображен ультразвуковой преобразователь с коммутатором пьезоэлементов. Преобразователь содержит корпус 1, заполненный жидким демпфером 2 и снабженный герметичной крышкой 3. В корпусе 1 установлены пьезоэлементы 4, 5. Корпус 1 снабжен протектором 6, имеющим форму конуса или пирамиды для контактирования с поверхностью контролируемого изделия в точке, или форму треугольной призмы, рабочее ребро которой перпендикулярно плоскости чертежа (фиг. 1), для обеспечения акустического контакта по линии.

Выводы пьезоэлементов 4, 5 соединены с коммутатором 7, который позволяет подключать их к выводам 8 преобразователя, соединяя пьезоэлементы между собой как синфазно, так и противофазно для излучения продольных и поперечных ультразвуковых волн соответственно, а также для приема этих типов волн.

Преобразователь работает следующим образом. После установки преобразователя острым рабочим торцом протектора 6 на исследуемую поверхность изделия к выводам 8 преобразователя подводят возбуждающее напряжение или в случае приема ультразвуковых колебаний снимают с этих выводов принятый сигнал. При синфазном включении пьезоэлементов 4, 5 они колеблются синфазно, поэтому вершина (или ребро) протектора 6, контактирующая с изделием, совершает колебания вдоль продольной оси преобразователя, излучая продольные волны. Во время приема продольные колебания вершины протектора 6 передаются на оба пьезоэлемента 4, 5 в фазе, поэтому на их выводах возникают синфазные сигналы. Поскольку пьезоэлементы 4, 5 включены синфазно, эти сигналы складываются, образуя выходной сигнал преобразователя, являющийся результатом приема продольных волн.

При противофазном соединении пьезоэлементов 4, 5 в режиме излучения пьезоэлементы колеблются противофазно, то есть, когда один из них сжимается, то другой растягивается. Поэтому основание протектора 6, непосредственно сопряженное с пьезоэлементами 4, 5, изгибается, а вершина протектора 6 совершает поперечные колебания относительно акустической оси преобразователя. Таким образом происходит излучение поперечных ультразвуковых волн. В режиме приема, наоборот, поперечные колебания вершины протектора 6 преобразуются в противофазные колебания пьезоэлементов 4, 5, электрические сигналы с которых также противофазны. Поскольку пьезоэлементы 4, 5 коммутатором 7 соединены противофазно, сигналы с них суммируются и на выводах 8 преобразователя образуется принятый сигнал поперечной волны.

Соблюдение вышеприведенных соотношений между высотой h протектора, расстоянием d между пьезоэлементами и длиной ультразвуковой волны l обеспечивает малые волновые расстояния между точками акустического контакта пьезоэлементов с протектором и протектора с контролируемым изделием. В результате протектор совершает колебания как жесткое тело, а не является волноводом, где две противофазные волны от пьезоэлементов гасили бы друг друга при распространении к вершине протектора, контактирующей с изделием. Это наряду с описанным расположением и соединением пьезоэлементов 4, 5 позволяет излучать и принимать поперечные ультразвуковые волны.

Таким образом, предлагаемый преобразователь может выступать в роли преобразователя продольных или поперечных ультразвуковых волн по выбору в зависимости от состояния коммутатора. Кроме того, преобразователь не требует применения контактных жидкостей и подготовки поверхности изделия для контроля. Передача акустической энергии от преобразователя к изделию и обратно происходит через сухой контакт острого протектора в точке или по линии с поверхностью изделия.

Похожие патенты RU2082163C1

название год авторы номер документа
УЛЬТРАЗВУКОВОЙ НИЗКОЧАСТОТНЫЙ КОМПОЗИЦИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ С ПЕРЕКЛЮЧЕНИЕМ ТИПА ВОЛН 2001
  • Козлов В.Н.
  • Самокрутов А.А.
  • Шевалдыкин В.Г.
RU2224250C2
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ОБЪЕКТОВ ИЗ ТВЁРДЫХ МАТЕРИАЛОВ, УЛЬТРАЗВУКОВОЙ ВЫСОКОЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) И АНТЕННАЯ РЕШЁТКА С ПРИМЕНЕНИЕМ СПОСОБА 2017
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Авдеев Андрей Андреевич
  • Беляев Николай Александрович
  • Козлов Антон Владимирович
RU2657325C1
УЛЬТРАЗВУКОВОЙ ДАТЧИК ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ 1992
  • Душенков Н.В.
  • Лянгузов Д.С.
RU2037143C1
УЛЬТРАЗВУКОВОЙ НИЗКОЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2018
  • Мышкин Юрий Владимирович
  • Муравьева Ольга Владимировна
  • Злобин Денис Владимирович
RU2703825C1
УЛЬТРАЗВУКОВОЙ НИЗКОЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2015
  • Соколов Игорь Вячеславович
  • Качанов Владимир Климентьевич
  • Концов Роман Валерьевич
  • Караваев Михаил Алексеевич
RU2584063C1
УЛЬТРАЗВУКОВОЙ ТОЛЩИНОМЕР ИЛИ ГЛУБИНОМЕР ДЕФЕКТОСКОПА 1994
  • Козлов В.Н.
  • Самокрутов А.А.
  • Шевалдыкин В.Г.
RU2082160C1
УЛЬТРАЗВУКОВАЯ АНТЕННАЯ РЕШЕТКА В ВИДЕ ДВУХМЕРНОЙ МАТРИЦЫ 1994
  • Козлов В.Н.
  • Самокрутов А.А.
  • Шевалдыкин В.Г.
RU2080592C1
ПРОТЕКТОР УЛЬТРАЗВУКОВОГО ПРЕОБРАЗОВАТЕЛЯ 1993
  • Липовко-Половинец П.О.
RU2034291C1
УЛЬТРАЗВУКОВОЙ ИММЕРСИОННЫЙ МНОГОСЕКЦИОННЫЙ СОВМЕЩЕННЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2011
  • Курочкин Александр Сергеевич
  • Виногоров Сергей Геннадьевич
  • Удалов Александр Владимирович
RU2499254C2
УЛЬТРАЗВУКОВОЙ ИММЕРСИОННЫЙ МНОГОСЕКЦИОННЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2013
  • Курочкин Александр Сергеевич
  • Виногоров Сергей Геннадьевич
  • Удалов Александр Владимирович
RU2541672C1

Реферат патента 1997 года УЛЬТРАЗВУКОВОЙ НИЗКОЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ

Использование: дефектоскопия, структуроскопия и толщинометрия изделий из бетона и горных пород. Сущность изобретения: преобразователь содержит герметичный корпус с протектором, заполненный демпфирующей жидкостью, в котором размещены два пьезоэлемента. Протектор выполнен с возможностью контактирования с поверхностью контролируемого изделия в точке или по линии и имеет малые волновые размеры. Пьезоэлементы расположены симметрично относительно акустической оси преобразователя и через коммутатор могут подключаться к выводам преобразователя либо синфазно, либо противофазно. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 082 163 C1

1. Ультразвуковой низкочастотный преобразователь, содержащий герметичный корпус с демпфирующей жидкостью, пьезоэлемент, установленный внутри корпуса, и протектор, сопряженный с корпусом со стороны излучающей поверхности пьезоэлемента, отличающийся тем, что он снабжен вторым пьезоэлементом и коммутатором с обеспечением подключения пьезоэлементов синфазно или противофазно, второй пьезоэлемент расположен в корпусе симметрично первому пьезоэлементу относительно акустической оси преобразователя, а протектор выполнен с возможностью контактирования с поверхностью контролируемого изделия в точке или по линии. 2. Преобразователь по п. 1, отличающийся тем, что высоту протектора и расстояние между центрами пьезоэлементов выбирают из соотношений
h < λ/10;
2d > h > d/2,
где h высота протектора;
d расстояние между центрами пьезоэлементов;
λ длина акустической волны в материале протектора.

Документы, цитированные в отчете о поиске Патент 1997 года RU2082163C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Автоматический сигнализатор для кантовочных машин 1939
  • Коваль Я.С.
  • Линденбаум Г.Н.
SU57432A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Способ приготовления консистентных мазей 1919
  • Вознесенский Н.Н.
SU1990A1

RU 2 082 163 C1

Авторы

Козлов В.Н.

Самокрутов А.А.

Шевалдыкин В.Г.

Даты

1997-06-20Публикация

1994-02-21Подача