ИНГИБИТОР КОРРОЗИОННО-МЕХАНИЧЕСКОГО РАЗРУШЕНИЯ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ Российский патент 1997 года по МПК C07D319/06 C23F11/04 

Описание патента на изобретение RU2082714C1

Изобретение относится к защите металлов от коррозионно-механического разрушения (КМР) в сероводородсодержащих минерализованных средах.

Среди наиболее близких по назначению ингибиторов (аналог), защищенных в последнее время патентами РФ, известно, например, применение триалкилбензилметиламмония хлористого или фтористого, или йодистого, дополнительно содержащего октидециламин, хинолин или его производные в качестве ингибитора сероводородной коррозии и наводороживания стали. [1]
К заявляемому ингибитору близок по составу (прототип) ингибитор коррозии железа, стали, сплавов железа и никеля в растворах HCl, который состоит из 1-этинилциклогексанол + диоксан. Соотношение компонентов 1:1. [2]
Недостатком прототипа является невозможность его применения в условиях сероводородной коррозии и коррозионно-механического разрушения сталей.

Задачей данного изобретения является разработка высокоэффективного ингибитора КМР низколегированных сталей при транспортировании сероводородсодержащего попутного газа и нефтяного конденсата.

Задача достигается тем, что в качестве ингибитора КМР низколегированных сталей применяют 5-метил-5-ацетил-1,3-диоксан. Это соединение ранее нигде не применялось.

Способ получения 5-метил-5-ацетил-1,3-диоксана заключается во взаимодействии метилэтилкетона и триоксана в среде хлороформа в присутствии серной кислоты при нагревании и интенсивном перемешивании с последующей обработкой полученной смеси после ее охлаждения водой и затем бикарбонатом натрия и выделения целевого продукта известными методами [3]

Данных об использовании 5-метил-5-ацетил-1,3-диоксана в качестве ингибитора КМР низколегированных сталей в известных науке и технике решениях нет.

Исследования по определению ингибирующей эффективности соединений проводили на образцах из стали 17Г1С, широко используемой в настоящее время при строительстве газонефтепроводов.

В качестве модельной коррозионной стали (КС) применяли среду NACE, имитирующую по своему составу (5% NaCl + 0,5% CH3COOH + 3,4 г/л H2S) увлажненный сероводородсодержащий природный и попутный нефтяные газы.

Защитный эффект против КМР низколегированных сталей определяли в соответствии с РД 39-0147103-324-88 "Методика определения степени защиты сталей ингибиторами против коррозионно-механического разрушения в сероводородсодеращих минерализованных средах".

Эффективность защиты от общей коррозии (ОК) оценивали по поляризационным кривым следующим образом:
Экстраполяцией тафелевых участков анодной и катодной поляризационных кривых до значения потенциала коррозии получали величину тока коррозии в сероводородной коррозионной среде (КС). Сравнивая ход поляризационных кривых в ингибированной и неингибированной КС, получаем значения токов коррозии в ингибированной (i) и неингибированной (i0) КС.

Степень защиты от ОК определяется по формуле:
Z (i0-i)/i0•100%
Данные измерений приведены в табл. 1, причем каждое значение получено как среднее арифметическое из пяти опытов. Значения токов коррозии оценивали по поляризационным кривым следующим образом:
Экстраполяцией тафелевых участков анодной и катодной поляризационных кривых до значения потенциала коррозии получали величину тока коррозии в сероводородной коррозионной среде (КС). Сравнивая ход поляризационных кривых в ингибированной и неингибированной КС, получаем значения токов коррозии в ингибированной (i) и неингибированной (i0) КС.

Степень защиты от ОК определяется по формуле:
Z (i0-i/i0•100%
Далее согласно ГОСТ 1493-83 (тип образца N 4, размер 7) производят испытания образцов из стали 17Г1С на разрывной машине МР-8В на воздухе, в модельной среде NACE и в модельной среде с добавлением ингибитора. Для испытания образцов в КС применена специальная коррозионная герметичная ячейка. Скорость деформирования образцов составляет 7,2•10-8 м/с, такая скорость выбрана с целью увеличения контакта стали с КС. Затем определяют коэффициент влияния среды КС на относительное сужение образцов при разрыве ψ Параметр j наиболее полно отражает запас пластичности стали, который резко уменьшается при ее коррозии в сероводородсодержащих средах, то есть является показателем СР основной причины КМР.

В табл. 2 приведены результаты испытаний по определению и КС, причем каждое значение получено как среднее арифметическое из пяти параллельных опытов.

Коэффициент влияния КС на j

где ψв относительное сужение образцов на воздухе;
ψN относительное сужение образцов в КС.

Аналогично вычисляют коэффициент влияния КС при добавлении ингибитора:

где ψN+H относительное сужение образцов в КС при добавлении ингибитора. Степень защиты от СР определяют по формуле:

При степени защиты от СР более 90% переходят к следующему этапу - испытаниям на коррозионную усталость.

Защитный эффект против коррозионной усталости (КУ), то есть разрушения происходящего при действии на низколегированную сталь суммарного циклического знакопеременного напряжения, которому подвержены газонефтепроводы вследствие влияния эксплуатационным фактором, определяют следующим образом: на специальной усталостной машине плоские образцы из стали 17Г1С подвергают консольному изгибу с размахом упругопластической деформации 2ε = 0,74% при частоте нагружения 0,6 Гц, что соответствует реальным условиям эксплуатации.

Нагружение проводят на воздухе, а также в специальной герметичной накладной ячейке в КС и в КС с добавлением ингибитора. При этом определяется число циклов до полного разрушения.

В табл. 3 приведены результаты этих измерений, причем каждое измерение получено как среднее арифметическое из пяти параллельных опытов.

Коэффициент влияния КС на усталостную долговечность низколегированной стали в КС без ингибитора и в его присутствии определяют по формуле:


где Nb число циклов до разрушения на воздухе;
NN число циклов до разрушения в КС;
NN+H число циклов до разрушения в КС при добавлении ингибитора.

Степень защиты от КУ вычисляют по формуле:

Из таблиц видно, что предлагаемый игибитор 5- метил-5-ацетил-1,3-диоксан обладает высокой степенью защиты как от общей коррозии, так и от сероводородного растрескивания и коррозионнной усталости стали в примененной коррозионной среде. Использование предлагаемого ингибитора позволит защищать оборудование не только от общей коррозии, но и от коррозионно-механического разрушения.

Похожие патенты RU2082714C1

название год авторы номер документа
ИНГИБИТОР КОРРОЗИОННО-МЕХАНИЧЕСКОГО РАЗРУШЕНИЯ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 1995
  • Бугай Д.Е.
  • Лаптев А.Б.
  • Молявко И.В.
  • Романов Н.А.
  • Рахманкулов Д.Л.
RU2085617C1
ИНГИБИТОР В СЕРОВОДОРОДСОДЕРЖАЩИХ МИНЕРАЛИЗОВАННЫХ СРЕДАХ 1994
  • Бугай Д.Е.
  • Лаптев А.Б.
  • Голубев М.В.
  • Латыпова Ф.Н.
  • Голубев В.Ф.
  • Рахманкулов Д.Л.
RU2083720C1
ИНГИБИТОР ДЛЯ ЗАЩИТЫ СТРОИТЕЛЬНЫХ СТАЛЕЙ ОТ КОРРОЗИОННО-МЕХАНИЧЕСКОГО РАЗРУШЕНИЯ В СЕРОВОДОРОДСОДЕРЖАЩИХ МИНЕРАЛИЗОВАННЫХ СРЕДАХ 1999
  • Михеева Е.Г.
  • Бугай Д.Е.
  • Абдуллин И.Г.
  • Эйдемиллер Ю.Н.
  • Лаптев А.Б.
  • Хаердинов Р.Э.
  • Селимов Ф.А.
RU2176686C2
N-ИЗОБУТИЛ-N-2-ТРИМЕТИЛСИЛИЛОКСИ(ЭТИЛ)-N-ЦИКЛОГЕКСАН-2 -ОНИЛМЕТИЛАМИН В КАЧЕСТВЕ ИНГИБИТОРА КОРРОЗИОННО-МЕХАНИЧЕСКОГО РАЗРУШЕНИЯ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 1993
  • Бугай Д.Е.
  • Лаптев А.Б.
  • Амерханов Р.Р.
  • Латыпова Ф.Н.
  • Махошвили Ю.А.
  • Рахманкулов Д.Л.
RU2119492C1
ИНГИБИТОР ДЛЯ ЗАЩИТЫ СТРОИТЕЛЬНЫХ СТАЛЕЙ ОТ КОРРОЗИОННО-МЕХАНИЧЕСКОГО РАЗРУШЕНИЯ В СЕРОВОДОРОДСОДЕРЖАЩИХ МИНЕРАЛИЗОВАННЫХ СРЕДАХ 2003
  • Колобова И.В.
  • Бугай Д.Е.
  • Абдуллин И.Г.
  • Лаптев А.Б.
  • Эйдемиллер Ю.Н.
  • Селимов Ф.А.
RU2230135C1
ИНГИБИТОР "РЕАКОР-2В" ДЛЯ ЗАЩИТЫ СТРОИТЕЛЬНЫХ СТАЛЕЙ ОТ КОРРОЗИИ В СЕРОВОДОРОДНЫХ МИНЕРАЛИЗОВАННЫХ СРЕДАХ 1997
  • Бугай Д.Е.
  • Голубев М.В.
  • Голубева И.В.
  • Лаптев А.Б.
  • Рахманкулов Д.Л.
  • Габитов А.И.
RU2134310C1
ИНГИБИТОР "РЕАКОР-7" ДЛЯ ЗАЩИТЫ ОТ КОРРОЗИИ СТРОИТЕЛЬНЫХ СТАЛЕЙ В СЕРОВОДОРОДНЫХ МИНЕРАЛИЗОВАННЫХ СРЕДАХ 1997
  • Арасланов И.М.
  • Бугай Д.Е.
  • Голубев М.В.
  • Каштанова Л.Е.
  • Лаптев А.Б.
  • Рахманкулов Д.Л.
  • Габитов А.И.
RU2134309C1
ИНГИБИТОР "РЕАКОР-21" ДЛЯ ЗАЩИТЫ ОТ КОРРОЗИИ СТРОИТЕЛЬНЫХ СТАЛЕЙ В СЕРОВОДОРОДНЫХ МИНЕРАЛИЗОВАННЫХ СРЕДАХ 1997
  • Бугай Д.Е.
  • Лаптев А.Б.
  • Голубев М.В.
  • Латыпова Ф.Н.
  • Рахманкулов Д.Л.
  • Габитов А.И.
RU2136782C1
2-АЛЛИЛОКСИМЕТИЛТЕТРАГИДРОФУРАН В КАЧЕСТВЕ ИНГИБИТОРА КОРРОЗИОННО-МЕХАНИЧЕСКОГО РАЗРУШЕНИЯ ТРУБНЫХ СТАЛЕЙ 1988
  • Бугай Д.Е.
  • Габитов А.И.
  • Рольник Л.З.
  • Кагарманова Г.Т.
  • Злотский С.С.
  • Рахманкулов Д.Л.
SU1510406A1
ИНГИБИТОР КОРРОЗИОННО-МЕХАНИЧЕСКОГО РАЗРУШЕНИЯ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 1988
  • Бугай Д.Е.
  • Габитов А.И.
  • Рольник Л.З.
  • Романов Н.А.
  • Злотский С.С.
  • Рахманкулов Д.Л.
  • Терегулова Г.Т.
  • Ахметзянова Э.С.
SU1600388A1

Иллюстрации к изобретению RU 2 082 714 C1

Реферат патента 1997 года ИНГИБИТОР КОРРОЗИОННО-МЕХАНИЧЕСКОГО РАЗРУШЕНИЯ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ

Изобретение относится к защите металлов от коррозии ингибиторами в сероводородсодержащих минерализованных средах и может быть использовано в промышленности для защиты стального оборудования от коррозионно-механического разрушения. Сущность изобретения заключается в том, что соединение 5-метил-5-ацетил-1,3-диоксан предложено использовать в качестве ингибитора коррозионно-механического разрушения низколегированных сталей. Степень защиты 5-метил-5-ацетил-1,3-диоксана составляет 99%. 3 табл.

Формула изобретения RU 2 082 714 C1

Применение 5-метил-5-ацетил-1,3-диоксана в качестве ингибитора коррозионно-механического разрушения низколегированных сталей.

Документы, цитированные в отчете о поиске Патент 1997 года RU2082714C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Ингибитор сероводородной коррозии и наводораживания стали 1989
  • Ивашов Валерий Иванович
SU1719462A1
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб 1921
  • Игнатенко Ф.Я.
  • Смирнов Е.П.
SU23A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Алцыбеева А.И., Левин С.З
Ингибиторы коррозии металлов./ Справочник под ред
проф
Антропова Л.И
- М.: Химия, 1968, с.264
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Патент ФРГ N 3242336, кл
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1

RU 2 082 714 C1

Авторы

Бугай Д.Е.

Лаптев А.Б.

Лесникова Е.Т.

Злотский С.С.

Рахманкулов Д.Л.

Даты

1997-06-27Публикация

1993-10-15Подача