СПОСОБ СТАБИЛИЗАЦИИ ЧАСТОТЫ ИЗЛУЧЕНИЯ ЛАЗЕРА Российский патент 1997 года по МПК H01S3/13 

Описание патента на изобретение RU2086060C1

Изобретение относится к квантовой электронике и может быть использовано для стабилизации частоты, а также диаграммы направленности излучения газовых и непрерывных твердотелых лазеров ультрафиолетового, видимого и инфракрасного диапазонов.

Техническая задача изобретения упрощение реализации способа стабилизации частоты. Известны способы стабилизации частоты лазеров, основанные на различных принципах, например способы, при которых частотно-модулированное лазерное излучение пропускают через внешнюю резонансно-поглощающую среду, измеряют смещение частоты относительно максимума поглощения этой среды, а затем за счет изменения длины резонатора частоту устанавливают на вершину контура поглощения. К таким решениям относятся авт. св. Е.Н.Базарова, Г.А.Герасимова и др. N 1163784, Б.И. N 20, 1991; авт. св. А.В.Миронова и др. N 1266429, Б. И. H 19, 1991; авт. св. А.И.Власова и др. N 1251768, Б.И. N 33, 1992.

Известны способы, описанные в устройствах и повышающие стабильность частоты лазера путем стабилизации диаграммы направленности излучения за счет наклонов зеркал (авт. св. А.И.Власова, В.И.Гордеева и др. N 1549436, Б.И. N 29, 1992).

Наиболее близким к изобретению является способ стабилизации частоты с внешним дискриминатором (Галутова Г. В. и др. Селекция типов колебаний и стабилизация частоты излучения ОКГ. М. Связь, 1972, с.57), по которому в качестве внешнего дискриминатора используется пассивный резонатор, который состоит из двух одинаковых сферических зеркал с конфигурацией близкой к конфокальной. Луч стабилизируемого лазера запускают в этот резонатор не соосно, а с некоторым поперечным смещением. Вышедшее из пассивного резонатора излучение направляют на отражательную призму-делитель, разделяющую его на два потока, а затем на фотоприемники. Фотоприемники регистрируют поперечные смещения этих потоков, обусловленные изменением угла выхода, который зависит в свою очередь от частоты излучения. Полученным с фотоприемников сигналом после обработки управляют длиной основного резонатора, стабилизируя таким образом частоту излучения лазера.

Недостатком способа-прототипа и способов-аналогов является сложность реализации, так как в этих решениях в качестве вспомогательных устройств используются либо внешние либо внутренние дополнительные элементы - резонаторы, модуляторы, расширители луча, поляризаторы и т.д. Наличие большого числа элементов существенно усложняет и удорожает систему стабилизации. Если к тому же одновременно осуществлять стабилизацию частоты изменением длины резонатора и компенсировать уходы диаграммы направленности наклонами зеркал, то система стабилизации усложняется еще больше.

Решаемая техническая задача в предлагаемом способе стабилизации частоты, включающем изменение длины резонатора, достигается тем, что в лазере дополнительно к осевой моде осуществляют генерацию периферийной многоходовой моды, настраивают резонатор так, чтобы его длина находилась вблизи критической для данной многоходовой моды и ее лучевые потоки не сливались друг с другом в пространстве, устанавливают за выходным зеркалом приемники излучения, центрируя их относительно лучевых потоков, регистрируют поперечные смещения этих потоков, а затем регулируют длину резонатора и наклоны его зеркал, добиваясь минимальных поперечных смещений лучевых потоков относительно приемников излучения.

Предлагаемый способ удовлетворяет критерию изобретательский уровень, так как его отличительные признаки позволяют получить новое свойство - стабилизацию частоты лазера в зависимости от поперечных смещений лучевых потоков многоходовой моды, генерирующей в данном лазере. Генерация таких мод, как и обычных одноходовых (осевых) возникает автоматически, если усиление активной среды достаточно для их генерации и поперечные размеры (апертуры) внутрирезонаторных элементов таковы, что эти элементы активный элемент, зеркала и т. п. не диафрагмируют многоходовые моды. Основное отличие многоходовых мод от одноходовых заключается в больших поперечных размерах внутрирезонаторного объема, который занимают эти моды и в своеобразной (многоходовой и внеосевой) конфигурации лучевых потоков внутри резонатора.

Автором обнаружена сильная зависимость поперечного положения лучевых потоков многоходовых мод, а именно радиусов окружностей, на которых располагаются пятна излучения таких мод (на зеркалах) от длины резонатора, если эти моды генерируют вблизи критических длин. При увеличении длины резонатора радиус окружности увеличивается, при уменьшении уменьшается. При этом пятна излучения сначала сливаются, а затем многоходовая мода гаснет при длине резонатора, равной критической.

На чертеже изображено устройство, позволяющее реализовать предлагаемый способ.

Устройство включает лазер, содержащий активный элемент 1 и зеркала резонатора 2 и 3. Здесь же показан лучевой поток осевой моды 4 и многоходовая мода, лучевые потоки 5 которой выходят через одно из зеркал резонатора в данном случае через зеркало 3. Приемники излучения 6, например матричные фотоприемники, установлены за зеркалом 3 и электрически связаны с вычислительно-усилительным устройством 7, а через него с исполнительными элементами 8. В качестве исполнительных элементов 8 могут быть использованы пьезокорректоры длины резонатора и наклонов его зеркал.

Предлагаемый способ реализуют следующим образом.

В резонаторе лазера дополнительно к осевой моде осуществляют генерацию периферийной многоходовой моды, после чего, уменьшая расстояние между зеркалами 2 и 3 настраивают резонатор так, чтобы его длина находилась вблизи критической для данной многоходовой моды, а ее лучевые потоки 5 не сливались друг с другом в пространстве. Затем выходные лучевые потоки многоходовой моды направляют на приемники излучения 6, установленные за зеркалом резонатора 3 и центрируют их относительно потоков моды, после чего с помощью приемников излучения начинают регистрировать поперечные смещения этих потоков. Электрические сигналы с приемников поступают на вычислительно-усилительное устройство 7, вырабатывающее сигналы управления исполнительными элементами 8. Этими сигналами регулируют длину резонатора и наклоны его зеркал 2 и 3, добиваясь минимальных поперечных смещений лучевых потоков относительно приемников излучения и тем самым стабилизируют частоту излучения лазера. По сравнению с прототипом упрощение реализации способа стабилизации частоты достигается за счет уменьшения количества дополнительных элементов и отказа от связанных с ними операций настройки, так как в предлагаемом способе отсутствует внешний резонатор, и следовательно, нет необходимости в достаточно трудоемкой операции его первоначальной котировки и поддержании этой котировки во время работы всей системы.

Похожие патенты RU2086060C1

название год авторы номер документа
Лазерная система со стабилизацией частоты лазеров 2020
  • Чучелов Дмитрий Сергеевич
  • Зибров Сергей Александрович
  • Васильев Виталий Валентинович
  • Васьковская Мария Игоревна
  • Величанский Владимир Леонидович
RU2723230C1
ЛАЗЕРНЫЙ СЕЙСМОМЕТР 2006
  • Воронов Виктор Иванович
  • Бухаров Данил Владимирович
RU2329524C2
СПОСОБ ИЗМЕРЕНИЯ РАЗМЕРОВ МИКРОЧАСТИЦ 1993
  • Польский Ю.Е.
  • Филиппова Н.В.
RU2061223C1
СПОСОБ ГАЗОЛАЗЕРНОЙ РЕЗКИ 1991
  • Смородин Ф.К.
RU2025244C1
СПОСОБ ИЗМЕРЕНИЯ ДЛИН 2014
  • Бикмухаметов Камил Абдуллович
  • Головин Николай Николаевич
  • Дмитриев Александр Капитонович
  • Исакова Алина Алексеевна
RU2561771C1
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР 2006
  • Мурзаханов Зуфар Газизович
  • Воронов Виктор Иванович
  • Ильин Герман Иванович
  • Козырев Сергей Михайлович
  • Курбанова Вероника Рауфовна
  • Левин Сергей Федорович
  • Павлов Борис Петрович
  • Скочилов Александр Фридрихович
  • Тазюков Фарид Хуснутдинович
  • Чугунов Юрий Петрович
RU2313807C1
МИКРОРЕЗОНАТОРНЫЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ФИЗИЧЕСКИХ ВЕЛИЧИН 1997
  • Бурков В.Д.
  • Гориш А.В.
  • Дехтяр А.В.
  • Егоров Ф.А.
  • Злобин Д.А.
  • Коптев Ю.Н.
  • Кузнецова В.И.
  • Малков Я.В.
  • Потапов В.Т.
  • Трегуб Д.П.
RU2135963C1
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР 2006
  • Мурзаханов Зуфар Газизович
  • Бухаров Данил Владимирович
  • Воронов Виктор Иванович
  • Ильин Герман Иванович
  • Козырев Сергей Михайлович
  • Курбанова Вероника Рауфовна
  • Левин Сергей Федорович
  • Маврин Сергей Васильевич
  • Павлов Борис Петрович
  • Скочилов Александр Фридрихович
  • Тазюков Фарид Хуснутдинович
RU2311666C1
Газовый лазер 1979
  • Орлов Б.В.
  • Польский Ю.Е.
SU1061670A1
ПЕРЕСТРАИВАЕМЫЙ ГАЗОВЫЙ ЛАЗЕР 1997
  • Архипова Н.В.
  • Меркулов К.Б.
  • Юдин В.И.
RU2130676C1

Реферат патента 1997 года СПОСОБ СТАБИЛИЗАЦИИ ЧАСТОТЫ ИЗЛУЧЕНИЯ ЛАЗЕРА

Использование: квантовая электроника. Сущность изобретения: способ стабилизации частоты излучения лазера заключается в том, что в лазере осуществляют генерацию периферийной многоходовой моды и настраивают резонатор так, чтобы его длина находилась вблизи критической для данной многоходовой моды, а ее лучевые потоки не сливались друг с другом в пространстве. Затем устанавливают за выходным зеркалом приемники излучения, регистрирующие поперечные смещения лучевых потоков многоходовой моды, и регулируют длину резонатора и наклоны его зеркал, добиваясь минимальных поперечных смещений лучевых потоков относительно приемников. 1 ил.

Формула изобретения RU 2 086 060 C1

Способ стабилизации частоты излучения лазера, включающий изменение длины резонатора, отличающийся тем, что в лазере дополнительно к осевой моде осуществляют генерацию периферийной многоходовой моды, настраивают резонатор таким образом, чтобы его длина находилась вблизи критической для данной многоходовой моды и ее лучевые потоки не сливались друг с другом в пространстве, при этом устанавливают за выходным зеркалом приемники излучения, центрируя их относительно лучевых потоков, и регистрируют поперечные смещения этих потоков, а затем регулируют длину резонатора и наклоны его зеркал, добиваясь минимальных поперечных смещений лучевых потоков относительно приемников излучения.

Документы, цитированные в отчете о поиске Патент 1997 года RU2086060C1

Авторское свидетельство СССР N 1251768, кл
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Галутва Г.В
и др
Селекция типов колебаний и стабилизация частоты излучения ОКГ
- М.: Связь, 1972, с
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1

RU 2 086 060 C1

Авторы

Воронов В.И.

Даты

1997-07-27Публикация

1994-04-19Подача