ТЕПЛОФИЗИЧЕСКИЙ МАКЕТ ТЕРМОЭМИССИОННОГО ПЕТЛЕВОГО КАНАЛА Российский патент 1997 года по МПК H01J45/00 

Описание патента на изобретение RU2087047C1

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии и реакторной теплофизике и может быть использовано в программе реакторных испытаний термоэмиссионных электрогенерирующих сборок (ЭГС).

В практике реакторных теплофизических исследований ТВЭЛ и реакторных испытаний ЭГС получил широкое распространение эксперимент с использованием теплофизического макета (ТФМ) соответствующего испытательного устройства. Так например, применительно к реакторным испытаниям термоэмиссионных ЭГС реакторный эксперимент с ТФМ позволяет [1]
определить абсолютное значение и пространственное распределение тепловыделения в топливных сердечниках ЭГС и "привязать" мощность ЭГС к тепловой мощности исследовательского ядерного реактора (ЯР);
измерить реактивность, вносимую петлевым каналом (ПК), и соответственно найти допустимую длительность компании ЯР;
измерить радиационное тепловыделение в конструкционных материалах ПК;
сформировать требуемое распределение тепловыделения по высоте ЭГС, а в некоторых случаях и спектр нейтронов;
провести ряд диагностических экспериментов.

Основное требование к ТФМ, по существу являющемуся аналогом ПК с испытываемой ЭГС, идентичность используемых при изготовлении ТФМ материалов и геометрии с материалами и геометрией ПК и ЭГС.

Наиболее близким к изобретению по технической сущности является ТФМ [2] который содержит корпус с размещенными в нем с зазором калориметрами, выполненными с возможностью размещения в каждом из них топливно-эмиттерного узла ЭГЭ моделируемой ЭГС, причем между двумя соседними калориметрами размещена вставка в виде топливного сердечника из делящегося вещества, диаметр которого равен диаметру топливного сердечника топливно-эмиттерного узла, при этом расстояние между торцами топливно-эмиттерного узла ЭГЭ, размещенного в ТФМ внутри калориметра, и топливного сердечника равно расстоянию между соседними ЭГЭ в моделируемой ЭГС.

В таком ТФМ обеспечивается высокая точность определения тепловыделения вследствие полного соответствия материалов и геометрии в ТФМ и моделируемом ПК с ЭГС. Однако он требует изготовления дополнительного количества топливных сердечников, используемых в виде вставок между калориметрами. Это удорожает изготовление ТФМ.

Техническим результатом, достигаемым при применении изобретения, является уменьшение количества делящегося вещества, используемого в ТФМ, и соответственно снижение стоимости изготовления ТФМ.

Указанный технический результат достигается в ТФМ термоэмиссионного ПК, содержащем корпус с размещенными в нем калориметрами, выполненными с возможностью размещения в каждом из них топливно-эмиттерного узла ЭГЭ моделируемой ЭГС, причем в торцевых зазорах между двумя соседними калориметрами установлены вставки из делящегося вещества, диаметр которых равен диаметру топливного сердечника топливно-эмиттерного узла, а расстояние между торцом топливного сердечника топливно-эмиттерного узла и вставки выбрано равным расстоянию между топливными сердечниками соседних ЭГЭ в моделируемой ЭГС, в котором в качестве вставки из делящегося вещества применены две таблетки делящегося вещества, причем толщина таблетки может быть выбрана из условия:
δ ≥ 0,5λсв (1)
где λсв длина свободного пробега нейтронов в делящемся веществе таблеток.

На чертеже приведена конструкционная схема предлагаемого устройства.

ТФМ термоэмиссионного ПК содержит корпус 1, который может быть выполнен герметичным, внутри которого размещены калориметры 2, выполненные в виде стакана с крышкой, на наружной поверхности которых через слой электроизоляции навита измерительная цепочка 3 из последовательно соединенных элементов, которая снабжена выводами 4, выполненными в виде термопар. У торцов 5 всех калориметров 2 (кроме крайних торцов 6 сборки всех калориметров) размещены таблетки 7 из делящегося вещества. Толщина таблеток 7 выбрана из соотношения (1). Внутри калориметров 2 размещены, как это показано на чертеже, топливно-эмиттерные узлы ЭГЭ, содержащие эмиттерную оболочку 8 и размещенный внутри нее топливный сердечник 9 из делящейся композиции. Расстояние между торцом топливного сердечника 9 и торцом таблетки 7 выбрано равным расстоянию между торцами топливных сердечников соседних ЭГЭ моделируемой ЭГС. Расстояние l между соседними таблетками 7 может быть выбрано любым. Диаметр таблеток 7 выбран равным диаметру топливного сердечника 9. Таблетки 7 могут быть изготовлены из того же, что и в сердечнике 9, делящегося вещества, но могут быть изготовлены и из другого, например другой степени обогащения.

ТФМ термоэмиссионного ПК работает следующим образом.

После изготовления отдельных калориметров 2 они должны быть отградуированы. Для этого внутрь калориметра 2 помещается электронагреватель и при увеличении его мощности W с помощью термопарных выводов 4 регистрируется электрический сигнал Е и измеряется температура Т каждого калориметра 2. В результате индивидуальной градуировки для каждого калориметра 2 будет определен коэффициент чувствительности:
Ki(T)=Wi/Ei (2)
После этого в каждый калориметр 2 размещается топливно-эмиттерный узел 8. Производится сборка всех калориметров 2 с размещением между ними таблеток 7. ТФМ помещается в ячейку ЯР, где затем будут проводиться петлевые реакторные испытания ЭГС, и мощность реактора поднимается до рабочего значения N. В результате деления ядер урана в каждом топливном сердечнике 9 выделяется тепловая мощность, проходит через измерительную оболочку 3 (цепочку термоэлементов), что вызывает появление электрического сигнала Е на каждом калориметре, который снимается с помощью термопар-выводов 4, одновременно измеряется и температура Т каждого калориметра. После этого тепловая мощность каждого топливного сердечника 9 определяется по выражению:
Qi=Ki(Ti)Ei (3)
Зная Q и мощность реактора N, можно найти соотношение тепловой мощности каждого ЭГЭ и мощности реактора:
Ki=Qi/N (4)
которое затем и используется для определения тепловой мощности каждого ЭГЭ (и всей ЭГС) при петлевых испытаниях.

Qэгэj=KiN (5)
Погрешность определения Qэгэ по (5) в основном будет определяться степенью соответствия геометрии и материалов ТФМ и ПК с ЭГС и условиями реакторного эксперимента с ТФМ и испытаний ПК с ЭГС. Благодаря тому что топливные таблетки 7 сделаны из делящегося вещества и их толщина выбрана по (1), обеспечивается практически одинаковое экранирование нейтронного потока при испытаниях ТФМ и при петлевых испытаниях ЭГС. Полная идентичность экранирования достигалась бы при условии δ = λсв. Однако, учитывая относительно малую площадь торцевой поверхности топливного сердечника 9 относительно боковой поверхности, уменьшение толщины таблетки до (1) допустимо при несущественном увеличении погрешности.

Таким образом, выполнение вставки из делящегося вещества в виде двух тонких таблеток позволяет существенно уменьшить расход делящегося вещества при изготовлении ТФМ.

Похожие патенты RU2087047C1

название год авторы номер документа
ТЕПЛОФИЗИЧЕСКИЙ МАКЕТ ПЕТЛЕВОГО КАНАЛА 1999
  • Синявский В.В.
RU2165655C1
ТЕПЛОФИЗИЧЕСКИЙ МАКЕТ МНОГОЭЛЕМЕНТНОЙ ТЕРМОЭМИССИОННОЙ СБОРКИ ПЕТЛЕВОГО КАНАЛА И СПОСОБ ИСПЫТАНИЙ ТЕПЛОФИЗИЧЕСКОГО МАКЕТА МНОГОЭЛЕМЕНТНОЙ ТЕРМОЭМИССИОННОЙ СБОРКИ ПЕТЛЕВОГО КАНАЛА 2000
  • Синявский В.В.
RU2240628C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ МОЩНОСТИ ТЕРМОЭМИССИОННОЙ СБОРКИ ПРИ ПЕТЛЕВЫХ РЕАКТОРНЫХ ИСПЫТАНИЯХ 1996
  • Королев В.У.
  • Синявский В.В.
RU2095882C1
ТЕРМОЭМИССИОННАЯ ЭЛЕКТРОГЕНЕРИРУЮЩАЯ СБОРКА С ПЛОСКО-ЦИЛИНДРИЧЕСКОЙ КОНФИГУРАЦИЕЙ ЭЛЕКТРОДОВ 1994
  • Синявский В.В.
RU2074453C1
СПОСОБ ПРОВЕДЕНИЯ ПЕТЛЕВЫХ ИСПЫТАНИЙ ЭЛЕКТРОГЕНЕРИРУЮЩЕГО КАНАЛА 1986
  • Корнилов Владимир Александрович
  • Синявский Виктор Васильевич
SU1840154A1
СПОСОБ УСКОРЕННЫХ ИСПЫТАНИЙ МНОГОЭЛЕМЕНТНОГО ЭЛЕКТРОГЕНЕРИРУЮЩЕГО КАНАЛА 1989
  • Синявский Виктор Васильевич
SU1839999A1
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВЫНОСА ОКСИДНОГО ТОПЛИВА ЧЕРЕЗ СИСТЕМУ ВЕНТИЛЯЦИИ ТОПЛИВНО-ЭМИТТЕРНОГО УЗЛА ТЕРМОЭМИССИОННОГО ЭЛЕКТРОГЕНЕРИРУЮЩЕГО КАНАЛА 1994
  • Корнилов В.А.
  • Синявский В.В.
RU2086033C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ МОЩНОСТИ ЭЛЕКТРОГЕНЕРИРУЮЩИХ ЭЛЕМЕНТОВ ТЕРМОЭМИССИОННОЙ СБОРКИ ПРИ ПЕТЛЕВЫХ РЕАКТОРНЫХ ИСПЫТАНИЯХ 1996
  • Синявский В.В.
RU2110111C1
ТЕРМОЭМИССИОННЫЙ РЕАКТОР-ПРЕОБРАЗОВАТЕЛЬ 1994
  • Корнилов В.А.
  • Синявский В.В.
RU2074452C1
ТЕРМОЭЛЕКТРИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСПРЕДЕЛЕНИЯ ТЕПЛОВЫДЕЛЕНИЯ В ТЕРМОЭМИССИОННОЙ ЭЛЕКТРОГЕНЕРИРУЮЩЕЙ СБОРКЕ 1994
  • Синявский В.В.
RU2069917C1

Реферат патента 1997 года ТЕПЛОФИЗИЧЕСКИЙ МАКЕТ ТЕРМОЭМИССИОННОГО ПЕТЛЕВОГО КАНАЛА

Назначение: термоэмиссионный метод преобразования тепловой энергии в электрическую. Сущность изобретения: между двумя соседними калориметрами интегрального теплового потока, внутри которых находится топливно-эмиттерный узел электрогенерирующего элемента моделируемой термоэмиссионной сборки, размещена вставка, выполненная из двух тонких таблеток делящегося вещества, толщина которых может быть выбрана из соотношения δ ≥ 0,6λ, где λ - длина свободного пробега нейтронов в делящемся веществе таблеток. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 087 047 C1

1. Теплофизический макет термоэмиссионного петлевого канала, содержащий корпус с размещенными в нем калориметрами интегрального теплового потока, выполненными с возможностью размещения в каждом из них топливно-эмиттерного узла термоэмиссионного электрогенерирующего элемента моделируемой термоэмиссионной электрогенерирующей сборки, и размещенными между торцами соседних калориметров вставками из делящегося вещества, диаметр которых выбран равным диаметру толпивного сердечника электрогенерирующего элемента, а расстояние между торцом топливного сердечника топливно-эмиттерного узла и торцом вставки выбрано равным расстоянию между топливными сердечниками соседних электрогенерирующих элементов моделируемой термоэмиссионной электрогенерирующей сборки, отличающийся тем, что в качестве вставки из делящегося вещества применены две тонкие таблетки из делящегося вещества. 2. Макет по п.1, отличающийся тем, что толщина таблеток из делящегося вещества выбрана из соотношения
δ ≥ 0,6λсв,
где λсв- длина свободного пробега нейтронов в делящемся веществе таблеток.

Документы, цитированные в отчете о поиске Патент 1997 года RU2087047C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Синявский В.В
Методы определения характеристик термоэмиссионных ТВЭЛОВ
- М.: Энергоатомиздат, 1990, с
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Там же с
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1

RU 2 087 047 C1

Авторы

Синявский В.В.

Соболев Ю.А.

Цоглин Ю.Л.

Даты

1997-08-10Публикация

1995-10-03Подача