Изобретение относится к радиотехнике, в частности к плоским микрополосковым антенным решеткам, и может найти применение в радиолокационных системах, системах связи и метрологии, где требуется в режиме приема обеспечить равноценный прием линейно поляризованного сигнала с любой ориентацией вектора поляризации в секторе углов (0 90o), а в режиме передачи ориентации вектора поляризации 45o.
Известна конструкция микрополосковой антенны (Peter L.Sullivan, Daniel H.Schaubert. Anaiysis of an Aperture Coupled Microstrip Antenna, IEEE Trans. Antennas and Propag. 1986, v.34, N 8, pp.977-984), содержащая микрополосковые излучатели, выполненные в форме прямоугольника, расположенные на одной диэлектрической подложке, а возбуждающие элементы и разводка питания выполнены на микрополосковых линиях и расположены на другой диэлектрической подложке. Эти подложки располагаются по разные стороны экрана, а связь между разводкой питания и каждым излучателем осуществляется через отверстие связи, выполненное в форме узкого прямоугольника в экране. Меняя положение излучателя относительно отверстия связи можно выбирать различные значения величины связи (амплитуды возбуждения) и тем самым формировать заданные амплитудные распределения по апертуре антенной решетки, и в частности специальные, как например, спадающие к краям. Однако при следующих достоинствах антенной решетки, а именно возможности формирования различных специальных амплитудных распределений по апертуре решетки, использование различных значений относительно диэлектрической проницаемости подложек (подложка излучателей, как правило, с низкой относительной диэлектрической проницаемостью порядка 2-3, подложка разводки питания с высокой относительной диэлектрической проницаемостью порядка 10-12) и отсутствие при сборке технологической операции пайки, антенной решетки присущи следующие недостатки:
резкая частотная зависимость входного импеданса микрополоскового излучателя от длины возбуждающего элемента (микрополоскового шлейфа) и размеров отверстия связи (в частности длины), разных величин смещения (в продольном и поперечном направлениях) микрополоскового излучателя относительно отверстия связи, разной величине относительной диэлектрической проницаемости подложек и разной толщине подложек, на которых размещены разводка питания и микрополосковые излучатели;
достаточно сложная (ветвистая) топология разводки питания с большим количеством 3-х дб тройников, как правило, не развязанных, приводят к значительным потерям, а также к возможности возникновения объемных и поверхностных паразитных связей, нарушающих требуемый закон амплитудно-фазового распределения по микрополосковым излучателям, а также имеет место зависимость амплитуды возбуждения микрополоскового излучателя (величины коэффициента связи) от точности расположения прямоугольной пластины по отношению отверстия связи, что особенно сильно сказывается при формировании сложных законов амплитудного распределения по апертуре антенной решетки.
В связи с этим накладываются достаточно жесткие допуски на конструктивно-технологические погрешности как при производстве печатных плат антенного полотна и разводки питания так и на технологическую операцию сборки антенного модуля в целом. Практически реализовать эти требования бывает достаточно сложно, поскольку имеет место низкая технологическая воспроизводимость изготовления микрополосковых печатных плат СВЧ-диапазона.
Известна конструкция микрополосковой антенны (C.K.Aanandan, A.Mohanan, K. G. Nair. Broad-Band Gap Coupled Microstrip Antenna, IEEE Trans, Antennas and Propag. 1990, v. 38, N 10, pp. 1581-1586), содержащая узкий активный микрополосковый излучатель линейной поляризации, выполненный в форме прямоугольника, по обе стороны от которого через зазоры расположены пассивные микрополосковые излучатели, выполненные также в форме прямоугольника. Активный излучатель, возбуждаемый модой (1,0), связан с пассивным излучателем по неизлучающим кромкам. При этом суммарная ширина излучателя складывается из ширины активного и пассивных излучателей и суммы ширины всех разделяющих их зазоров и эта суммарная ширина равна ширине обычного микрополоскового излучателя прямоугольной формы, причем длина каждого излучателя выбрана равной половине длине волны. Нагруженный излучатель обладает большой широкополосностью чем обычный и его можно использовать как излучающий элемент антенных решеток. К достоинствам антенной решетки из нагруженных излучателей можно отнести значительную широкополосность, так например, по уровню КСВ<2 полоса пропускания составляет 6% тогда как из обычных излучателей полоса пропускания составляет 0,6% К недостаткам составной антенны можно отнести следующее: значительная зависимость входного импеданса излучателя от положения точки подключения возбуждающего элемента (штыря) и ширин разделительных зазоров, специальные виды амплитудного распределения, например, спадающего к краям апертуры антенного полотна, формируется исключительно разводкой питания за счет использования не 3-х дб делителей мощности, что вызывает усложнение топологии разводки питания и при производстве накладываются достаточно жесткие корпуса на конструктивно-технологические погрешности как при производстве печатных плат антенного полотна и разводки питания, так и на технологическую операцию сборки антенного модуля в целом.
Наиболее ценным техническим решением прототипом является плоская микрополосковая антенная решетка (H.Entschladen, Nagel. Microstrip patch array antenna, Electron Letters, 25 th October, 1984, v. 20, N 22, pp.931-933), содержащая нечетное количество полуволновых излучателей, разделенных между собой зазорами, при этом излучатели выполнены в виде прямоугольника, центры которых размещены в узлах прямоугольной сетки, а боковые кромки излучателей расположены параллельно соответствующим осям этой координатной сетки, возбуждающий элемент выполнен в виде металлического штыря, установленного в диэлектрической подложке, один конец которого гальванически соединен с центральным излучателем антенной решетки, а другой с отрезком коаксиальной входной линии передачи. Поскольку в антенной решетке активным излучателем является только один центральный излучатель, а разделительные зазоры в Е и Н плоскостях выбираются достаточно малой величины, поэтому электромагнитная связь между излучателями осуществляется как по излучающим так и по неизлучающим боковым кромкам излучателей, в связи с этим в антенной решетке формируется специальное амплитудное распределение спадающее к краям, обеспечивающее низкий уровень боковых лепестков. Антенная решетка с излучателями прямоугольной формы имеет линейную поляризацию, а если подобрать ширину излучателя равной его длине и обеспечить условия возбуждения двух ортогональных мод с равными амплитудами и в фазовой квадратуре, то в этом случае обеспечивается круговая поляризация. Отсутствие разводки питания в антенной решетке исключает паразитные излучения из полосковых проводников и исключает объемные и поверхностные паразитные связи. Такая антенная решетка имеет большую полосу пропускания (так по уровню КСВ=2 полоса 2Δf составляет порядка 10%) за счет того, что зазоры между излучателями маленькие, поэтому связаны они между собой довольно сильно и следовательно нагруженная добротность небольшая. В то время как антенная решетка имеющая аналогичное амплитудное распределение, с таким же размером апертуры и самостоятельным возбуждением каждого излучателя, обеспечиваемого разводкой питания, и с зазорами между излучателями устраняющими электромагнитную связь между ними, полоса частот 2Δf по уровню КСВ=2 составляет порядка (1 2)%
Недостатками известного технического решения являются:
во-первых, входной импеданс антенной решетки находится в прямой зависимости от количества излучателей центральной ветви, связанных между собой по излучаемым кромкам, а именно входной импеданс в первом приближении равен входному импедансу одного центрального излучателя деленного на число излучателей этой ветви, т.е. чем больше излучателей (узкая диаграмма направленности) тем меньше входной импеданс антенной решетки, поэтому входной импеданс антенной решетки имеет достаточно малую величину и, как правило, меньше 50 Ом, в то время как коаксиально-полосковые переходы коаксиальной линии имеют волновое сопротивление 50 Ом. В связи с этим возникает необходимость включения согласующего трансформатора импедансов между возбуждающим элементом (металлическим штырем) и отрезком входной коаксиальной линии передачи, что в свою очередь приводит к резкому усложнению конструкции. Кроме того согласующий трансформатор должен быть широкополосным, в противном случае произойдет сужение полосы пропускания антенной решетки.
во-вторых, антенная решетка имеет ограничение по количеству излучателей по вертикальной и горизонтальной ветвям прямоугольной координатной сетки, поскольку вид амплитудного распределения по апертуре антенной решетки относительно центрального активного излучателя является спадающим к краям. Причем законы изменения амплитудного распределения в направлениях по излучающим и не излучающим кромкам имеют разный функциональный вид, а именно: по излучающим кромкам носит более плавный характер, по неизлучающим кромкам более резкий (крутой) характер, при этом каждая горизонтальная и вертикальная ветви излучателей имеют свой функциональный вид амплитудного распределения. Следовательно, в таких антенных решетках имеет место ограничение на реально достижимые ширины диаграммы направленности в Е и Н плоскостях в сторону их уменьшения.
Технической задачей данного изобретения по п.1 формулы изобретения является создание плоской микрополосковой антенной решетки с суммарной диаграммой направленности и обеспечивающей одинаковые условия приема линейно поляризованного сигнала с любой ориентацией вектора напряженности электрического поля в секторе углов от 0 до 90o, а в режиме передачи - излучения линейно поляризованного сигнала с 45o наклоном ориентации вектора напряженности электрического поля, одновременно формировать узкие диаграммы направленности с низким уровнем боковых лепестков, улучшенным согласованием и упрощенной конструкцией согласующего устройства.
Поставленная задача по п.1 формулы изобретения решается плоской микрополосковой антенной решеткой, содержащей нечетное количество излучателей, выполненных в форме прямоугольника, центры которых размещены в узлах прямоугольной координатной сетки и разделены между собой зазорами одинаковой ширины, боковые кромки излучателей расположены параллельно соответствующим осям этой координатной сетки, при этом центральный излучатель выполнен в форме квадрата, сторона которого равна половине длины волны, средние излучатели одной и другой центральных ветвей прямоугольной координатной сетки соответственно, выполнены в форме прямоугольника одна сторона которого, параллельная соответствующей центральной ветви прямоугольной координатной сетки, равна длине волны, а другая смежная с ней сторона излучателя равна половине длине волны, остальные излучатели плоской антенной решетки выполнены в форме квадрата, сторона которого равна длине волны, при этом возбуждающий элемент центрального излучателя подключен в одном его углу в точке пересечения одной и другой его смежных боковых кромок, а к каждому среднему излучателю одной и другой центральных ветвей прямоугольной координатной сетки, в точке, расположенной на середине боковой кромки, длиной равной длине волны и лежащей на одной прямой с одной и другой смежными боковыми кромками центрального излучателя соответственно, подключены возбуждающие элементы, идентичные элементу центрального излучателя, одни концы которого гальванически соединены с соответствующими излучателями, вторые концы возбуждающих элементов центрального и среднего излучателей плоской антенной решетки гальванически соединены с введенной разводкой питания, выполненной в виде крестообразного ортогонального соединения четырех отрезков микрополосковых линий, оси которых попарно соосны и расположены параллельно центральным ветвям прямоугольной координатной сетки соответственно, при этом диэлектрическая подложка разводки питания установлена параллельно диэлектрической подложке плоской антенной решетки, причем в центр крестообразного соединения четырех отрезков микрополосковых линий включен второй конец возбуждающего элемента центрального излучателя, а вторые концы возбуждающих элементов средних излучателей одной и другой центральных ветвей прямоугольной координатной сетки включены в соответствующие отрезки микрополосковых линий крестообразного соединения по осевым линиям, при этом отрезок входной линии передачи подключен к продолжению одного из четырех отрезков микрополосковых линий крестообразного соединения, а длина остальных трех отрезков микрополосковых линий ограничивается точкой подключения соответствующего ему второго конца возбуждающего элемента крайнего среднего излучателя центральных ветвей прямоугольной координатной сетки плоской антенной решетки.
Плоская микрополосковая антенная решетка структурно представляет собой четыре квадрата, разделенных двумя ветвями средних излучателей, при этом каждый квадрант содержит квадратные излучатели со стороной равной длине волны. Суммарная диаграмма направленности формируется за счет того, что все квадранты антенной решетки возбуждаются синфазно. В режиме приема это обеспечивается тем, что вектор напряженности принятого электрического поля представляется в виде суперпозиции двухкоординатно-ориентированных векторов один с вертикальной, а другой с горизонтальной направлениями ориентациями в принятой системе координатной сетки, с последующим построчным и постолбцовым суммированием в соответствующем среднем излучателе центральной ветви прямоугольной координатной сетки антенной решетки и результирующим суммированием в цепи разводки питания. Таким образом, любой принятый сигнал с ориентацией вектора напряженности электрического поля в секторе углов от 0o до 90o, раскладываясь на вертикальную и горизонтальную составляющие, равноценно принимается этой антенной без поляризационных потерь. В режиме передачи в антенной решетке происходит обратное преобразование, когда в излучателях возбуждаются два линейно поляризованных сигнала один с вертикальной, другой с горизонтальной поляризациями, суперпозиция которых формирует результирующий, под углом 45o, вектор напряженности электрического поля излучаемой электромагнитной энергии. Крестообразное соединение микрополосковых линий разводки питания, являющееся возбуждающей системой для средних излучателей прямоугольной формы, обеспечивает относительно них симметричное амплитудное возбуждение каждого периферийного излучателя квадратной формы, со стороной равной длине волны, что дает возможность формирования симметричных в Е и Н плоскостях диаграммы направленности. Наличие разводки питания на микрополосковых линиях позволяет достаточно просто обеспечивать согласование 50 омной входной линии передачи с входным сопротивлением антенной решетки.
Технической задачей данного изобретения по п.2 формулы изобретения является создание плоской микрополосковой антенной решетки с воронкообразной (разностной) диаграммой направленности и обеспечивающей одинаковые условия приема линейно поляризованного сигнала с любой ориентацией вектора напряженности электрического поля в секторе углов от 0 до 90o, а в режиме передачи излучения линейно поляризованного сигнала с 45o наклоном ориентации вектора напряженности электрического поля, одновременно формировать диаграммы направленности с низким уровнем боковых лепестков, улучшенным согласованием и упрощенной конструкцией согласующего устройства.
Поставленная задача по п.2 формулы изобретения решается плоской микрополосковой антенной решеткой, содержащей нечетное количество излучателей, выполненных в форме прямоугольника, центры которых размещены в узлах прямоугольной координатной сетки и разделены между собой зазорами одинаковой ширины, боковые кромки излучателей расположены параллельно соответствующим осям этой координатной сетки, при этом центральный излучатель выполнен в форме квадрата, сторона которого равна половине длине волны, средние излучатели одной и другой центральных ветвей прямоугольной координатной сетки соответственно, выполнены в форме прямоугольника, одна сторона которого, параллельная соответствующей центральной ветви прямоугольной координатной сетки, равна длине волны, а другая, смежная с ней сторона излучателя, равна половине длины волны, остальные излучатели плоской антенной решетки выполнены в форме квадрата, сторона которого равна длине волны, при этом возбуждающий элемент центрального излучателя подключен в одном углу в точке пересечения одной и другой его смежных боковых кромок, к каждому среднему излучателю двух смежных лучей центральных ветвей прямоугольной координатной сетки, расположенных по обе стороны одной и другой смежных боковых кромок центрального излучателя соответственно, на краю боковой кромки, длиной равной длине волны, и лежащей на одной прямой с одной и другой смежными боковыми кромками центрального излучателя соответственно, в точке пересечения со смежной боковой кромкой длиной равной половине длине волны, дальней по отношению к углу подключения возбуждающего элемента центрального излучателя, подключены возбуждающие элементы, а к каждому среднему излучателю двух других смежных лучей центральных ветвей прямоугольной координатной сетки, в точке расположенной на середине боковой кромки, длиной равной длине волны, и лежащей на одной прямой с одной и другой смежными боковыми кромками центрального излучателя соответственно, подключены возбуждающие элементы, причем все возбуждающие элементы средних излучателей идентичны возбуждающему элементу центрального излучателя, при этом одни концы которых гальванически соединены с соответствующими средними излучателями, а их вторые концы и второй конец возбуждающего элемента центрального излучателя плоской микрополосковой антенной решетки гальванически соединены с разводкой питания, выполненной в виде крестообразного ортогонального соединения четырех отрезков микрополосковых линий, оси которых попарно соосны и расположены параллельно центральным ветвям прямоугольной координатной сетки соответственно, при этом диэлектрическая подложка разводки питания установлена параллельно диэлектрической подложке плоской микрополосковой антенной решетки, причем в центр крестообразного соединения четырех отрезков микрополосковых линий включен второй конец возбуждающего элемента центрального излучателя, а вторые концы возбуждающих элементов средних излучателей одной и другой центральных ветвей прямоугольной координатной сетки включены в соответствующие отрезки микрополосковых линий крестообразного соединения по осевым их линиям, при этом отрезок входной линии передачи подключен к продолжению одного из четырех отрезков микрополосковых линий крестообразного соединения, а длина остальных трех отрезков микрополосковых линий ограничивается точкой подключения соответствующего ему второго конца возбуждающего элемента крайнего среднего излучателя центральных ветвей прямоугольной координатной сетки антенной решетки.
Плоская микрополосковая антенная решетка по п.2 формулы изобретения обеспечивает формирование воронкообразной (разностной) диаграммы направленности за счет того, что возбуждающие элементы подключены к средним излучателям двух смежных лучей центральных ветвей прямоугольной координатной сетки по следующей схеме, излучатели расположенные по обе стороны одной и другой смежных боковых кромок центрального излучателя в углу в точке пересечения боковых кромок, а к излучателям других смежных ветвей в середине боковой кромки. В результате этого квадранты антенной решетки возбуждаются противофазно. Поляризационные свойства антенной решетки в режиме передачи и в режиме приема точно такие же, как и у антенной решетки с суммарной диаграммой направленности по п.1 формулы изобретения.
На фиг,1 изображена конструкция плоской микрополосковой антенной решетки с суммарной диаграммой направленности и подключенными возбуждающими элементами в середины боковых кромок средних излучателей; на фиг.2 конструкция микрополосковой разводки питания плоской микрополосковой антенной решетки; на фиг. 3 конструкция корпуса плоской микрополосковой антенной решетки; на фиг. 4 вариант плоской микрополосковой решетки; на фиг.5 конструкция металлического экрана, разделяющего диэлектрические подложки антенной решетки и разводки питания;
Плоская микрополосковая антенная решетка 1 содержит нечетное количество излучателей, размещенных в узлах прямоугольной координатной сетки и разделенных между собой по каждой ветви прямоугольной координатной сетки зазорами 2, одинаковой ширины. Центральный излучатель 3 выполнен в форме квадрата, сторона которого равна половине длины волны, а средние излучатели 4 одной и другой центральных ветвей 5 и 6 прямоугольной координатной сетки соответственно, выполнены в форме прямоугольника, одна сторона 7 каждого из которых, параллельная соответствующей центральной ветви 5 и 6 прямоугольной координатной сетки, равна длине волны, а другая смежная с ней сторона 8 излучателя 4 равна половине длине волны, остальные излучатели 9 плоской антенной решетки 1 выполнены в форме квадрата, сторона 10 которого равна длине волны, при этом возбуждающий элемент 11 центрального излучателя 3, выполненный в виде металлического штыря, подключен в одном его углу 12 в точке пересечения одной и другой его смежных боковых кромок 13 и 14 соответственно, а к каждому среднему излучателю 4 одной и другой центральных ветвей 5 и 6 прямоугольной координатной сетки, в точке расположенной на середине боковой кромки 7, длиной равной длине волны, и лежащей на одной прямой с одной стороны или другой смежными боковыми кромками 13 и 14 центрального излучателя 3 соответственно, подключены возбуждающие элементы 25, идентичные возбуждающему элементу 11 центрального излучателя 3. Одни концы возбуждающих элементов 11 и 15 гальванически соединены с излучателями 3 и 4 соответственно, а вторые концы возбуждающих элементов 11 и 15 центрального излучателя 3 и средних излучателей 4 плоской антенной решетки гальванически соединены с разводкой питания 16, выполненной в виде крестообразного ортогонального соединения четырех отрезков микрополосковых линий 17, 18, 19 и 20, оси 21 которых попарно соосны и расположены параллельно центральным ветвям 5 и 6 прямоугольной координатной сетки соответственно, при этом диэлектрическая подложка 22 разводки питания 16 установлена параллельно диэлектрической подложке 23 антенной решетки 1. В центр 24 крестообразного соединения четырех отрезков микрополосковых линий 17, 18, 19 и 20 включен возбуждающий элемент 11 центрального излучателя 3, а возбуждающие элементы 15 средних излучателей 4 одной и другой центральных ветвей 5 и 6 прямоугольной координатной сетки включены в соответствующие им отрезки микрополосковых линий 17, 18, 19 и 20 по осям крестообразного их соединения. Отрезок входной линии передачи 25 подключен к продолжению одного 17 из четырех отрезков 17, 18, 19 и 20 микрополосковых линий крестообразного соединения, а длина остальных трех отрезков микрополосковых линий 28, 19 и 20 крестообразного соединения определяется точкой подключения соответствующего ему возбуждающего элемента 15 крайнего, по отношению к центральному излучателю 3, среднего излучателя 4 центральных ветвей 5 и 6прямоугольной координатной сетки антенной решетки 1. В плоской микрополосковой антенной решетке фиг.3 к средним излучателям 4 двух смежных лучей 26 и 27 центральных ветвей 5 и 6 прямоугольной координатной сетки, расположенных по обе стороны одной и другой смежных боковых кромок 13 и 14 центрального излучателя 3 соответственно, на краю боковой кромки 7 в углу, образованном пересечением со смежной с ней боковой кромкой 27, дальнем по отношению к углу 12 подключения возбуждающего элемента 11 центрального излучателя 3, подключены возбуждающие элементы 15.
Отрезок входной линии передачи 25 через согласующий трансформатор 28 соединен с канализирующей 50-Омной линией передачи 29 и с последующим соединением со стандартным коаксиально-полосковым переходом. Диэлектрическая подложка 22 разводки питания 16 устанавливается в закрытый металлический корпус 30. Диэлектрическая подложка 22 разводки питания 16 и диэлектрическая подложка 23 антенной решетки 1, установленные параллельно друг относительно друга, разделены между собой общим металлическим экраном 31 в котором, в местах расположения металлических штырей возбуждающих элементов 11 и 15, выполнены круглые отверстия 32, образуя тем самым отрезки межуровневых коаксиальных переходов.
Плоская микрополосковая антенная решетка работает следующим образом.
В режиме передачи СВЧ-энергия входного сигнала с длиной волны λ поступает на отрезок 50-Омной канализирующей линии передачи 29 и через согласующий трансформатор 28 на отрезок входной линии передачи 25, подключенный к разводке питания, а именно, к одному отрезку микрополосковой линии 17 крестообразного соединения. Поскольку три других отрезка микрополосковых линий 18, 19 и 20 крестообразного соединения являются разомкнутыми на концах, то в микрополосковых проводниках 17, 18, 19 и 20 крестообразного соединения устанавливается режим стоячих волн с пучностью напряжения на концах отрезков микрополосковых линий 18, 19 и 20. Точки подключения вторых концов возбуждающих элементов 11 и 15 центрального 3 и средних 4 излучателей антенной решетки 1 к крестообразному соединению микрополосковых линий 17, 18, 19 и 20 строго определены условиями выбора размеров всех излучателей 3, 4 и 9 антенной решетки 1, а именно расстояния кратны половине длины волны и соответствуют точкам пучности напряжения с соответствующей для этой точки фазой напряжения. Каждый средний излучатель 4, являющийся активным по боковым кромкам 7, и центральный излучатель 3, являющийся активным по боковым кромкам 13 и 14, связаны по этим активным кромкам через зазоры с лежащими с ним на одной ветви прямоугольной координатной сетки пассивными излучателями. При такой системе возбуждения и связи между излучателями плоская антенная решетка 1 представляет собой две независимые системы линеек излучателей, в центре каждой из которых расположен активный излучатель: первая система линеек линейки излучателей ориентированы вдоль ветви 5 прямоугольной координатной сетки, и вторая система линейки излучателей ориентированы вдоль ветви 6 прямоугольной координатной сетки, причем каждый излучатель плоской антенной решетки 1 соответствующей парой боковых кромок одновременно входит в состав первой и второй систем линеек излучателей. Каждая система линеек излучателей имеет свое направление ориентации линейного вектора поляризации электрического поля, так система линеек, продольные оси которых ориентированы параллельно ветви 5 прямоугольной координатной сетки, имеет направление вектора параллельное ветви 5, а система линеек излучателей, продольные оси которых ориентированы параллельно ветви 6 прямоугольной координатной сетки, имеет направление вектора параллельное ветви 6. Таким образом в каждом излучателе плоской антенной решетки 1 одновременно возбуждаются колебания двух независимых ортогональных между собой линейных поляризаций с равной амплитудой и синфазных. Условие синфазности сохраняется во всех излучателях плоской антенной решетки 1 достаточно точно, а амплитудное распределение является спадающим к краям антенной решетки 1, при этом закон амплитудного распределения имеет двойную симметрию, т.е. симметрично относительно одной и другой ветвей 5 и 6 прямоугольной координатной сетки.
Суперпозиция двух ортогональных линейно поляризованных и синфазных колебаний в каждом излучателе плоской антенной решетки формирует результирующее поле линейной поляризации с вектором Е ориентированным под углом 45o (направление ориентации в заявленной плоской антенной решетке - является диагональ центрального излучателя).
В режиме приема падающая электромагнитная волна на плоскую микрополосковую решетку с любой линейной ориентацией вектора наряженности электрического поля в секторе угла (0-90o), определяемом одной и другой боковыми кромками 13 и 14 центрального излучателя 3, раскладывается на две составляющие: одна составляющая это проекция параллельная одной центральной ветви 5 прямоугольной координатной сетки, другая составляющая это проекция параллельная другой центральной ветви 6 прямоугольной координатной сетки. Составляющая параллельной ветви 5 возбуждает систему линеек излучателей, продольные оси которых ориентированы вдоль этой же ветви 5 прямоугольной координатной сетки, а составляющая параллельная ветви 6 возбуждает систему линеек излучателей, продольные оси которых ориентированы вдоль этой же ветви 6. Принятая электромагнитная энергия падающей волны выделяется на активных излучателях 3 и 4 каждой системы линеек и через возбуждающие элементы 15 поступает в разводку питания, т.е. на микрополосковые проводники 17, 18, 19 и 20 крестообразного соединения, где синфазно суммируются и результирующий сигнал поступает на отрезок входной линии передачи 25.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОМАГНИТНЫЙ АППАРАТ | 1994 |
|
RU2103032C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КООРДИНАТ ПОЛОЖЕНИЯ ИЗМЕРИТЕЛЬНОГО ЭЛЕМЕНТА | 1996 |
|
RU2103701C1 |
МИКРОПОЛОСКОВАЯ АНТЕННАЯ РЕШЕТКА С ПОЛЯРИЗАЦИОННОЙ АДАПТАЦИЕЙ | 1997 |
|
RU2115201C1 |
МИКРОПОЛОСКОВАЯ АНТЕННАЯ РЕШЕТКА С ПОЛЯРИЗАЦИОННОЙ АДАПТАЦИЕЙ | 1998 |
|
RU2138105C1 |
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ДЕФЕКТОВ В ИЗДЕЛИЯХ ИЗ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ | 1996 |
|
RU2103700C1 |
МИКРОПОЛОСКОВАЯ АНТЕННАЯ РЕШЕТКА С ПОЛЯРИЗАЦИОННОЙ АДАПТАЦИЕЙ | 1998 |
|
RU2156526C2 |
МИКРОПОЛОСКОВАЯ АНТЕННАЯ РЕШЕТКА | 1998 |
|
RU2156524C2 |
МИКРОПОЛОСКОВАЯ АНТЕННАЯ РЕШЕТКА | 1998 |
|
RU2156525C2 |
МИКРОПОЛОСКОВАЯ АНТЕННАЯ РЕШЕТКА С ПОЛЯРИЗАЦИОННОЙ АДАПТАЦИЕЙ | 1998 |
|
RU2138104C1 |
РАДИОИНТРОСКОП | 1996 |
|
RU2084876C1 |
Изобретение относится к радиотехнике, в частности к микрополосковым антенным решеткам, и может найти применение в радиолокационных системах, в системах связи и метрологии, где требуется в режиме приема обеспечить равноценный прием линейнополяризованного сигнала с любой ориентацией вектора поляризации в секторе углов 0 - 90o, а в режиме передачи ориентацию вектора поляризации 45oC. Технической задачей является создание плоской микрополосковой антенной решетки с суммарной диаграммой направленности, обеспечивающей одинаковые условия приема линейно поляризованного сигнала с любой ориентацией вектора напряженности электрического поля в секторе углов от 0 до 90o, в режиме передачи с ориентацией 45o. Плоская микрополосковая антенная решетка содержит нечетное количество излучателей прямоугольной формы разделенных зазорами одинаковой ширины, центральный излучатель 3 выполнен квадратной формы со стороной равной λ/2 , средние излучатели 4 выполнены прямоугольной формы с одной стороной 8 равной половине длины волны, а другой стороной 7 равной длине волны, остальные излучатели 9 выполнены в форме квадрата со стороной равной длине волны, возбуждающий элемент 11 центрального излучателя 3 и возбуждающие элементы 15 средних излучателей 4 соединены с микрополосковой разводкой питания 16. 1 з.п. ф-лы, 5 ил.
IEEE Trans | |||
Antennas and Propag, 1990, v | |||
Способ сужения чугунных изделий | 1922 |
|
SU38A1 |
Визирный прибор | 1924 |
|
SU1581A1 |
Eoectron Letters, 25-th October, 1984, v | |||
Прибор для промывания газов | 1922 |
|
SU20A1 |
Автомобильная фара | 1924 |
|
SU931A1 |
Авторы
Даты
1997-08-10—Публикация
1994-08-19—Подача