СПОСОБ УПРАВЛЕНИЯ ДОЛГОРЕСУРСНОЙ КОСМИЧЕСКОЙ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ С ТЕРМОЭМИССИОННЫМ РЕАКТОРОМ-ПРЕОБРАЗОВАТЕЛЕМ Российский патент 1997 года по МПК H01J45/00 G21D3/08 

Описание патента на изобретение RU2091901C1

Изобретение относится к способам управления ядерными реакторами, в частности, к управлению термоэмиссионным реактором-преобразователем (РП), используемым в качестве источников электрической энергии в ядерных энергетических установках (ЯЭУ) космических аппаратов (КА).

Известен ряд способов управления ЯЭУ со встроенными в активную зону РП электрогенерирующими каналами (ЭГК) (Основы автоматического управления ядерными космическими энергетическими установками. /Под редакцией акад. Петрова Б.Н. М. Машиностроение, 1974; Системы управления ракетных двигателей и энергетических установок. М. Машиностроение, 1985).

Недостатком этих способов является то, что в них не предусматривается оптимизация режима работы по давлению пара цезия и температуре коллекторов ЗГК.

Наиболее близким техническим решением к заявленному является способ управления термоэмиссионной ЯЭУ "Топаз", включающий поддержание заданного уровня электрической мощности при постоянном напряжении, обеспечиваемым быстродействующим регулятором напряжения, перераспределяющим постоянный ток РП между аппаратурой КА и балластной нагрузкой, устанавливаемой в контуре теплоносителя ЯЭУ, путем поддержания заданного значения тока РП изменением тепловой мощности и давления пара цезия за счет изменения средней температуры генератора пара цезия (ГПЦ), тепловое состояние которого определяется двухпозиционным регулятором температуры, компенсацию ресурсных изменений параметров установки, в том числе связанных с отклонениями от оптимальных значений температуры коллекторов ЭГК и отклонениями от оптимальных значений средней температуры ГПЦ путем увеличения тепловой мощности, (Атомная энергия. т.71, вып.6, стр.575; т.71, стр.386).

Недостатками этого способа являются:
1) работа ЯЭУ на уровне тепловой мощности, превышающей необходимую, при управлении по току реактора;
2) дополнительная потеря электрической мощности РП при управлении по выходной температуре теплоносителя;
3) грубая подстройка (с шагом 12 К) м неизвестному ее оптимальному значению, которое может изменяться в течение ресурса, что может привести к росту тепловой мощности или снижению электрической;
4) отсутствие подстройки к оптимальному значению температуры коллекторов ЭГК, которое также изменяется в течение ресурса, что приводит к эффектам, аналогичным указанным в предыдущем пункте;
5) указанные обстоятельства в конечном итоге приводят к сокращению ресурса ЯЭУ.

Электрическая мощность РП при заданной тепловой мощности является экстремальной функцией давления пара цезия, определяемого температурой ГПЦ, и температуры коллекторов ЭГК, определяемой температурой теплоносителя и термическим сопротивлением коллекторного пакета ЭГК. Эта функция достигает максимума при определенных значениях температур генератора и коллекторов ЭГК (Tos)opt и (Tk)opt. Отклонения от этих значений могут привести к существенному уменьшению электрической мощности. Так, например, изменения Tk в пределах 100 К могут приводить к изменению электрической мощности в пределах 10-15% (Синявский В. В. Методы определения характеристик термоэмиссионных твэлов. М. Энергоатомиздат, 1990). Зависимость электрической мощности при заданной тепловой от Tos такова, что отклонения от (Tos)opt в пределах 10-15 К могут привести к уменьшению электрической мощности в пределах 5-10% ( Синявский В.В. Проектирование и испытания термоэмиссионных твэлов. М. Атомиздат, 1981). Величины (Tos)opt и (Tk)opt могут изменяться в течение ресурса.

Задача, на выполнение которой направлено заявленное изобретение - повышение ресурсоспособности ЯЭУ за счет ее работы в течение кампании при минимальном токе РП, обеспечивающем потребности данного комплекта бортовой аппаратуры, и оптимальных значений температур ГПЦ и коллекторов ЭУК.

Технический результат обеспечение минимально возможной тепловой мощности РП в течение кампании, что приводит: к максимально возможному использованию закладываемых в конструкцию ЯЭУ резервов по температурному режиму (тепловой мощности) на ресурсную деградацию выходных параметров; к уменьшению необходимой мощности балластной нагрузки и, следовательно, массы системы регулирования напряжения. Все это приводит к увеличению ресурсоспособности ЯЭУ.

Этот результат достигается тем, что САУ с быстродействующим регулятором напряжения балластного типа оснащается программно-логическим устройством, с помощью которого предложенный способ реализуется следующим образом.

Подстраивают в токовом канале регулирования задание на ток РП к минимально необходимому значению для характерных режимов потребления бортовой аппаратуры путем обеспечения заданного минимального тока в балластную нагрузку на этих режимах.

Периодически определяют оптимальную температуру коллектора.

регулируют величину термического сопротивления зазора между ЭГК и каналом охлаждения изменением давления газа в этом зазоре и подстраивают температуру коллектора к оптимальному значению путем минимизации производной электрической мощности по температуре теплоносителя при постоянной тепловой мощности, что исключает необходимость компенсации ресурсных изменений этого параметра тепловой мощностью.

Периодически определяют оптимальную температуру ГПЦ и подстраивают температуру ГПЦ к оптимальному значению путем минимизации производной электрической мощности по температуре ГПЦ, что исключает необходимость компенсации ресурсных изменений этого параметра тепловой мощностью.

Подстройку к (Tk)opt можно осуществлять изменением термического сопротивления между каналом теплоносителя и коллектором ЭГК (Rт) изменением давления газа в газовом зазоре между ЭГК и внутренней трубкой канала охлаждения. Именно этот зазор вносит основной вклад в термическое сопротивление Rт. Изменение давления газа в зазоре в пределах от нескольких единиц до нескольких сотен торр при тепловых потоках через коллектор 20-40 Вт/см2 может приводить к изменению перепада температур от теплоносителя в каналах охлаждения РП при постоянной тепловой мощности изменения сброса мощности в балластную нагрузку, устанавливаемую в контуре теплоносителя, приводящему к изменению средней температуры теплоносителя в каналах охлаждения. При включениях-отключениях бортовой нагрузки или включениях-отключениях специально предусмотренной нагрузки могут быть определены знак и величина производной электрической мощности по средней температуре теплоносителя. Путем изменения давления газа в зазоре между ЭГК и каналом охлаждения можно минимизировать абсолютное значение этой производной до требуемой величины, что и будет означать подстройку к оптимальному значению температуры коллектора.

Оптимизация режима по температуре ГПЦ при применении двухпозиционного регулятора температуры производится по анализу автоколебаний температуры генератора, тепловой мощности и тока РП, а при применении регулятора, поддерживающего заданную температуру ГПЦ, путем минимизации производной dNэл/dTcs.

Минимально возможное значение установки тока РП в регуляторе тока для характерных режимов потребления бортовой аппаратуры выбирается из условия обеспечения заданного минимального тока в балластное сопротивление для этих режимов. Определенное таким образом задание на ток РП изменяется при переходе с одного режима потребления на другой по команде из комплекса управления КА.

Последовательность управляющих действий в предлагаемом способе может быть представлена следующим образом:
определение и задание в регуляторе тока установки на ток РП для обеспечения определенного режима потребления бортовой аппаратуры;
при заданном токе РП определение и подстройка к оптимальному значению (Tos)opt;
при заданном токе РП определение и подстройка к оптимальному значению (Tk)opt;
повторение указанных действий по подстройке к оптимальным значениям (Tos)opt и (Tk)opt при изменениях задания на ток РП;
периодическое в течение ресурса определение оптимальных значений (Tos)opt и (Tk)opt и подстройка к ним при заданном токе РП.

Возможность получения указанного выше технического результата определяется следующими обстоятельствами.

1. Возможный запас по уровню тепловой мощности и температурному режиму ЯЭУ для компенсации ресурсной деградации выходных параметров в современных проектах ЯЭУ ограничен по массогабаритным требованиям величиной 20-25% от расчетного номинального режима.

При отсутствии точной подстройки к (Tos)opt и (Tk)opt только отклонения значений этих температур от оптимальных значений с учетом изменений последних в течении ресурса могут привести к использованию практически полного указанного запаса или его значительной доли для компенсации этих отклонений (см. приведенные выше данные по влиянию температур ГПЦ и коллекторов ЭГК на электрическую и тепловую мощности).

3. При подстройке к минимальному току РП, оптимальным значениям (Tos)opt и (Tk)opt имеющийся в ЯЭУ запас по тепловой мощности может быть израсходован на компенсацию деградации всех других параметров ЯЭУ.

4. Работа в ЯЭУ в режиме с минимально возможным током РП и оптимизированным значениям (Tos)opt и (Tk)opt не только позволяет в максимальной мере использовать имеющийся запас по тепловой мощности, но и снизить темп использования этого запаса, что в совокупности приводит к возрастанию ресурса ЯЭУ, определяемого по критерию обеспечения минимально допустимой электрической мощности.

Похожие патенты RU2091901C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ МЕЖЭЛЕКТРОДНОГО ЗАЗОРА ЭЛЕКТРОГЕНЕРИРУЮЩИХ ЭЛЕМЕНТОВ ПРИ ПЕТЛЕВЫХ ИСПЫТАНИЯХ ТЕРМОЭМИССИОННЫХ ЭЛЕКТРОГЕНЕРИРУЮЩИХ КАНАЛОВ 1989
  • Синявский Виктор Васильевич
  • Бабушкин Юрий Владимирович
SU1840160A1
ТЕРМОЭМИССИОННЫЙ ЭЛЕКТРОГЕНЕРИРУЮЩИЙ МОДУЛЬ ДЛЯ АКТИВНОЙ ЗОНЫ ЯДЕРНОГО РЕАКТОРА С ВЫНЕСЕННОЙ ТЕРМОЭМИССИОННОЙ СИСТЕМОЙ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ (ВАРИАНТЫ) 2000
  • Ярыгин В.И.
  • Купцов Г.А.
  • Ионкин В.И.
  • Овчаренко М.К.
  • Ружников В.А.
  • Михеев А.С.
  • Ярыгин Д.В.
RU2187156C2
ТЕРМОЭМИССИОННЫЙ РЕАКТОР-ПРЕОБРАЗОВАТЕЛЬ 1992
  • Андреев П.В.
  • Галкин А.Я.
  • Жаботинский Е.Е.
  • Кабанова В.П.
  • Сидоров В.Г.
RU2045793C1
ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 1993
  • Аверкиев О.В.
  • Аристархов Ю.Д.
  • Ежов Н.И.
  • Жаботинский Е.Е.
  • Зарицкий Г.А.
  • Калинин В.А.
  • Сидоров В.Г.
  • Сливкин Б.В.
  • Шефтель Л.М.
RU2063090C1
СПОСОБ ПУСКА ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С ТЕРМОЭМИССИОННЫМ ПРЕОБРАЗОВАНИЕМ ЭНЕРГИИ 1991
  • Прикот К.Н.
  • Кочерешко Е.П.
RU2007764C1
ТЕРМОЭМИССИОННЫЙ РЕАКТОР-ПРЕОБРАЗОВАТЕЛЬ 1992
  • Грязнов Г.М.
  • Жаботинский Е.Е.
  • Залманов В.П.
  • Лапшов В.В.
  • Лелюшенко Б.Д.
  • Матвеев В.А.
  • Сербин В.И.
  • Сидоров В.Г.
  • Федотов М.Е.
RU2046447C1
ЯДЕРНЫЙ РЕАКТОР 1994
  • Аристархов Ю.Д.
  • Калинин В.А.
  • Ледовский С.Ф.
  • Сидоров В.Г.
RU2106699C1
КОСМИЧЕСКАЯ ДВУХРЕЖИМНАЯ ЯДЕРНО-ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ТРАНСПОРТНО-ЭНЕРГЕТИЧЕСКОГО МОДУЛЯ 2014
  • Корнилов Владимир Александрович
RU2592069C2
ТЕРМОЭМИССИОННЫЙ РЕАКТОР-ПРЕОБРАЗОВАТЕЛЬ НА БЫСТРЫХ НЕЙТРОНАХ 1998
  • Корнилов В.А.
  • Синявский В.В.
  • Юдицкий В.Д.
  • Альмамбетов А.К.
  • Овчаренко М.К.
RU2151441C1
ТЕРМОЭМИССИОННЫЙ РЕАКТОР-ПРЕОБРАЗОВАТЕЛЬ 1999
  • Корнилов В.А.
RU2165656C1

Реферат патента 1997 года СПОСОБ УПРАВЛЕНИЯ ДОЛГОРЕСУРСНОЙ КОСМИЧЕСКОЙ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ С ТЕРМОЭМИССИОННЫМ РЕАКТОРОМ-ПРЕОБРАЗОВАТЕЛЕМ

Назначение: для правления термоэмиссионными реакторами-преобразователями (РП), используемыми в качестве источников электрической энергии в ядерных энергетических установках (ЯЭУ) космических аппаратов. Сущность изобретения: для повышения ресурсоспособности ЯЭУ подстраивают в токовом канале регулирования задание на ток РП к минимально необходимому значению для характерных режимов потребления бортовой аппаратуры путем обеспечения заданного минимального тока в балластную нагрузку на этих режимах. Периодически определяют оптимальную температуру коллектора, регулируют величину термического сопротивления зазора между электрогенерирующим каналом и каналом охлаждения изменением давления газа в этом зазоре и подстраивают температуру коллектора к оптимальному значению путем минимизации производной электрической мощности по температуре теплоносителя при постоянной тепловой мощности, периодически определяют оптимальную температуру генератора пара цезия (ГПЦ), подстраивают температуру ГПЦ к оптимальному значению путем минимизации производной электрической мощности по температуре ГПЦ.

Формула изобретения RU 2 091 901 C1

Способ управления долгоресурсной космической ядерной энергетической установкой с термоэмиссионным реактором-преобразователем, имеющим экстремальную зависимость электрической мощности от давления пара цезия, определяемого температурой генератора пара цезия, и от температуры коллекторов электрогенерирующих каналов, включающий поддержание заданного уровня электрической мощности при постоянном напряжении, обеспечиваемом быстродействующим регулятором напряжения, перераспределяющим постоянный ток реактора-преобразователя между аппаратурой космического аппарата и балластной нагрузкой, устанавливаемой в контуре теплоносителя энергетической установки, путем поддержания заданного значения тока реактора-преобразователя изменением тепловой мощности и давления пара цезия за счет изменения средней температуры генератора пара цезия, тепловое состояние которого определяется двухпозиционным регулятором температуры, компенсацию ресурсных изменений параметров установки, в том числе связанных с отклонениями от оптимальных значений температуры коллекторов электрогенерирующих каналов и отклонениями от оптимальных значений средней температуры генератора пара цезия, путем увеличения тепловой мощности, отличающийся тем, что подстраивают в токовом канале регулирования задание на ток реактора-преобразователя к минимально необходимому значению для характерных режимов потребления бортовой аппаратуры путем обеспечения заданного минимального тока в балластную нагрузку на этих режимах, периодически определяют оптимальную температуру коллектора, регулируют величину термического сопротивления зазоров между электрогенерирующими каналами и каналами охлаждения изменением давления газа в этих зазорах и подстраивают температуру коллектора к оптимальному значению путем минимизации производной электрической мощности по температуре теплоносителя при постоянной тепловой мощности, периодически определяют оптимальную температуру генератора пара цезия и подстраивают температуру генератора пара цезия к оптимальному значению путем минимизации производной электрической мощности по температуре генератора пара цезия.

Документы, цитированные в отчете о поиске Патент 1997 года RU2091901C1

Основы автоматического управления ядерными космическими энергетическими установками /Под ред
Петрова Б.Н
- Машиностроение, 1974
Вольберг М.С
Основы принципы управления термоэмиссионной ЯЭУ "Топаз" на различных режимах работы
Атомная энергия
Т
Контрольный стрелочный замок 1920
  • Адамский Н.А.
SU71A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1

RU 2 091 901 C1

Авторы

Афанасьева И.В.

Ганьшин А.И.

Жаботинский Е.Е.

Макаров А.Н.

Фотеев Г.М.

Даты

1997-09-27Публикация

1993-12-15Подача