СПОСОБ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 1997 года по МПК B03C5/00 C02F1/46 

Описание патента на изобретение RU2095151C1

Изобретение относится к области обработки воды, в том числе ее очистке и обеззараживанию электрическими разрядами, и может быть использовано в различных отраслях народного хозяйства (обработка питьевых и сточных вод производственных и сельскохозяйственных предприятий, жилищно-коммунальных хозяйств, в микробиологии, медицине и т.д.).

Наиболее близким к предлагаемому изобретению является способ очистки воды и устройство для его реализации, выбранный в качестве прототипа /1/. Он основан на обработке воды импульсными высоковольтными разрядами. Возрастание напряженности электрического поля и ее снижение вследствие электрического разряда по поверхности воды приводит к изменению поляризации молекул воды и, как следствие, разрушению мембранных оболочек бактерий в обеззараживаемой воде. Повышение эффективности способа достигается "самосогласованным" перемешиванием воды за счет подбора определенной скорости нарастания напряжения, частоты следования импульсов и использования электродов с боковыми выступами.

Реализующее данный способ устройство имеет разрядную камеру с обрабатываемой водой, расположенные над водой высоковольтные и заземленные электроды и высоковольтный источник напряжения.

Однако этот способ и устройство для очистки недостаточно эффективны (степень обеззараживания невелика) и энергетически невыгодны, поскольку обеззараживание производится только посредством изменения поляризации молекул воды и на глубине не более 2 3 см.

Целью предлагаемого изобретения является повышение эффективности очистки и обеззараживания воды.

Указанная цель достигается тем, что в способе очистки и обеззараживания воды путем обработки ее высоковольтными импульсами напряжения процесс очистки и обеззараживания осуществляется импульсными незавершенными скользящими разрядами по поверхности воды при скорости нарастания напряжения ≥1013 В/с и скорости спада ≥1012 В/с, при этом величину напряжения выбирают не более пробивного напряжения слоя обрабатываемой воды и не менее величины напряжения, необходимого для развития скользящих разрядов и обеспечения величины удельного энерговклада за один разрядный импульс на литр обрабатываемой жидкости не менее 0,3 Дж/л.

В предлагаемом способе существенно новым является режим комплексной очистки и обеззараживания воды электрическими разрядами, включающем шесть механизмов воздействия на обрабатываемую воду, что ведет к реализации поставленной цели.

1) Во время быстрого возрастания напряжения происходит поляризация молекул воды, которые разрушают мембранные оболочки бактерий. Причем, по сравнению с прототипом, более высокие скорость нарастания и величина напряжения (≈ 150 кВ) обеспечивают более высокие скорость и величину поляризации и, как следствие, более эффективное обеззараживание воды.

2) Очистка и обеззараживание воды происходит под действием УФ излучения, возникающего при прохождении каналов разряда по поверхности воды. Высокая скорость нарастания напряжения в этом случае обуславливает возникновение высокоэнергетичных искровых каналов и, как следствие, максимальную долю излучения в УФ-области спектра, соответствующей оптимальным условиям деструкции органических соединений, что приводит к обеззараживанию воды.

3) Обеззараживание воды происходит под действием ударных волн, возникающих при прохождении разрядных импульсов. Сила воздействия ударной волны (величина импульсного давления) обратно пропорциональна длительности разрядного импульса, поэтому параметры разрядного контура (режим работы генератора импульсов напряженности (ГИНа), конструктивная индуктивность L (фиг.2) в предлагаемом изобретении выбираются таким образом, чтобы скорость спада напряжения была максимальной.

4) Под действием разрядных импульсов в объеме воды происходит образование молекул озона, что приводит к окислению вредных примесей и, как следствие, очистке и обеззараживанию воды.

5) При прохождении токов смещения, протекающих во время прохождения разрядных импульсов, в объеме воды возникает магнитное поле, которое, воздействуя на микроорганизмы, способствует процессу очистки и обеззараживания воды.

6) Плазма, формируемая наносекундными скользящими разрядами, является эффективным источником рентгеновского излучения большой площади, которое также способствует обеззараживанию обрабатываемой воды.

Ограничение по скорости нарастания напряжения является необходимым условием для эффективной реализации механизмов воздействия, обозначенных под пунктами 1), 2), 6). В случае, если скорость нарастания напряжения (при характерных амплитудах ≈ 105 В) будет меньше 1013 В/с, длительность фронта нарастания напряжения будет больше 108 с. Тогда энергии электронов разряда будет недостаточно для создания плазмы, генерирующей, главным образом, в УФ и рентгеновской области спектра.

Ограничение по величине скорости спада напряжения обусловлено следующим. Создание ударной волны требует резкого скачка давления (температуры) в канале разряда. В газах это может существенно проявляться только тогда, когда, плотность электронов в разряде соответствует полной однократной ионизации атомов ne≈1017см-3 [9] Тогда из соотношений
j neV-e; j I/S; E IUtr длительность разряда tr, будет
tr E/USev-ne,
где, оценив значения
E энергия, вкладываемая в разряд, ≈ 1 Дж;
U напряжение, прикладываемое к электродам, ≈ 105 В;
S площадь канала разряда, ≈10-3см2;
e заряд электрона, ≈10-19Кл;
v- дрейфовая скорость электронов в воздухе, ≈107см/с;
ne концентрация электронов в канале, ≈1017см-3, получаем длительность импульса tr≈10-7 с.

Чтобы обеспечить такую длительность напряжения, подаваемом на электроды 105 В, скорость спада должна быть не менее 1012 В/с.

Условия, накладываемые на величину прикладываемого напряжения, представляются очевидными.

Величина удельного энерговклада на литр обрабатываемой жидкости Eуд O, 3Дж/л обусловлена тем, что при меньшем энерговкладе энергозатраты на очистку одинакового объема воды будет существенно выше вследствие уменьшения числа и эффективности воздействия механизмов очистки и обеззараживания. Увеличение Eуд не приводит к увеличению эффективности процесса очистки.

Предлагаемый способ по сравнению с прототипом обеспечивает повышение эффективности очистки благодаря совмещению и повышению интенсивности нескольких механизмов воздействия на обрабатываемую воду.

Указанная цель достигается также тем, что в устройстве для реализации способа, включающем камеру для обрабатываемой жидкости, высоковольтный источник питания, по крайней мере один высоковольтный и заземленный электроды, заземленный электрод расположен на дне разрядной камеры, а высоковольтный электрод меньшей площади, чем заземленный, находится непосредственно на поверхности обрабатываемой воды.

С целью повышения скорости очистки путем увеличения объема обрабатываемой жидкости используется один, два или более высоковольтных электрода.

На фиг. 1 приведена структурная схема устройства, реализующего предлагаемый способ (вид сбоку), где 1 генератор импульсов напряжения (ГИН), 2 высоковольтные электроды, 3 заземленный электрод, 4 камера с обрабатываемой водой. На фиг.2 представлена эквивалентная электрическая схема устройства, где C конденсатор, одной пластиной которого служит заземленный электрод, другой пластиной -высоковольтные электроды и разрядные каналы, а диэлектриком воды; L конструктивная индуктивность контура, образованная индуктивностью подводящих проводов.

Устройство работает следующим образом. От ГИНа 1, обеспечивающего необходимые для реализации способа параметры высоковольтного импульса, на электроды 2, расположенные непосредственно на поверхности воды, подается импульс напряжения (реально его амплитуда может составлять 100 1000 кВ) со скоростью нарастания ≈1013 В/с. Расстояние между электродами (толщина слоя воды), площадь заземленного электрода и электрические параметры ГИНа выбираются из следующего условия: удельный энерговклад от ГИНа за 1 импульс Eуд должен быть менее Eуд≥0,3 Дж/л. После достижения напряженности поля определенной величины по поверхности воды начинают развиваться каналы незавершенного электрического разряда, заряжающего емкость конденсатора C, образованного заземленным электродом и разрядными каналами (фиг.2). При этом происходят следующие процессы, приводящие к очистке и обеззараживанию воды: 1) Во время возрастания напряжения происходит поляризация молекул воды. Поляризующиеся молекулы воды разрушают оболочки бактерий, что приводит к обеззараживанию воды. 2) Очистка и обеззараживание воды происходит под действием ультрафиолетового излучения, возникающего при прохождении каналов разряда по поверхности воды. 3) Обеззараживание воды происходит также под действием ударных волн, возникающих при прохождении разрядных импульсов. 4) Под действием разрядных импульсов происходит интенсивное озонирование воды, окисление вредных примесей и, как следствие, ее очистка и обеззараживание. 5) При прохождении токов смещения, протекающих во время зарядки конденсатора, образованного заземленным электродом и разрядными каналами (фиг.2), возникает магнитное поле, которое, воздействуя на микроорганизмы, способствует процессу очистки и обеззараживания воды. 6) Облучение воды рентгеновским излучением от плазмы наносекундного разряда способствует обеззараживанию обрабатываемой воды.

Расположение заземленного электрода на дне разрядной камеры необходимо для того, чтобы вода обрабатывалась на всю глубину камеры.

Расположение высоковольтного электрода непосредственно на поверхности воды обусловлено необходимостью зажигания скользящего разряда по ее поверхности. Если поместить электрод в воду, то разряда по поверхности не будет. Если электрод поместить над водой, то энергия, затрачиваемая на пробой воздушного промежутка, будет использоваться неэффективно.

Использование высоковольтного электрода с площадью, меньшей площади заземления электрода обусловлено тем, что реализация способа возможна только тогда, когда хотя бы часть пластины конденсатора C (фиг.2) образуется именно разрядными каналами, которых не будет, если площадь высоковольтного электрода будет равна или больше площади заземленного. Эффективность воздействия способа будет тем выше, чем большая площадь будет занята разрядными каналами. Таким образом, площадь высоковольтного электрода выбирается меньше площади заземленного, и чем меньше она будет, тем лучше. В случае, если используется более одного высоковольтного электрода, их суммарная площадь должна быть меньше площади заземленного.

Предлагаемый способ и устройство для его реализации по сравнению с известными обеспечивает повышение эффективности очистки благодаря совмещению и повышению интенсивности нескольких механизмов воздействия на обрабатываемую воду.

Похожие патенты RU2095151C1

название год авторы номер документа
ГАЗОВЫЙ ЛАЗЕР 1997
  • Осипов В.В.
  • Иванов М.Г.
RU2148882C1
СПОСОБ И УСТАНОВКА ДЛЯ СЕЛЕКТИВНОГО РАСКРЫТИЯ ТОНКИХ ВКЛЮЧЕНИЙ ИЗ ТВЕРДОГО МАТЕРИАЛА 1998
  • Котов Ю.А.
  • Корженевский С.Р.
  • Мотовилов В.А.
  • Филатов А.Л.
  • Корюкин Б.М.
  • Борисков Ф.Ф.
RU2150326C1
ЭЛЕКТРОРАЗРЯДНЫЙ ЛАЗЕР 1996
  • Осипов В.В.
  • Иванов М.Г.
  • Мехряков В.Н.
RU2124255C1
УСТРОЙСТВО ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ 2008
  • Спиров Вадим Григорьевич
  • Цедрик Павел Николаевич
  • Пискарёв Игорь Михайлович
RU2372296C1
ЭЛЕКТРОРАЗРЯДНЫЙ ЛАЗЕР (ВАРИАНТЫ) 1996
  • Осипов В.В.
  • Иванов М.Г.
  • Мехряков В.Н.
RU2107366C1
ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ЭЛЕКТРОРАЗРЯДНЫЙ ЛАЗЕР 1999
  • Иванов М.Г.
  • Осипов В.В.
  • Филатов А.Л.
  • Корженевский С.Р.
  • Смирнов П.Б.
RU2144723C1
ЭЛЕКТРОРАЗРЯДНЫЙ ЛАЗЕР 1991
  • Осипов В.В.
RU2032972C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОКА ФОРМИРОВАНИЯ КАНАЛА ВЫСОКОВОЛЬТНОГО ПРОБОЯ В КРИСТАЛЛИЧЕСКИХ ДИЭЛЕКТРИКАХ ПО ЗАВИСИМОСТИ СКОРОСТИ ФОРМИРОВАНИЯ КАНАЛА ПРОБОЯ ОТ НАПРЯЖЕНИЯ 1996
  • Емлин Р.В.
RU2108592C1
ГЕНЕРАТОР ИМПУЛЬСОВ ВЫСОКОГО НАПРЯЖЕНИЯ 1989
  • Любутин С.К.
  • Рукин С.Н.
  • Словиковский Б.Г.
RU2012129C1
СПОСОБ ОЧИСТКИ И СТЕРИЛИЗАЦИИ ЖИДКИХ ИЛИ ГАЗООБРАЗНЫХ СРЕД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Шмелев Владимир Михайлович
  • Подойницын Сергей Николаевич
RU2326820C1

Иллюстрации к изобретению RU 2 095 151 C1

Реферат патента 1997 года СПОСОБ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Использование: изобретение относится к очистке и обеззараживанию промышленных и питьевых вод и может быть использовано в различных отраслях народного хозяйства /производственные и сельскохозяйственные предприятия, жилищно-коммунальные хозяйства, микробиология, медицина и т.д./. Сущность изобретения : воду обрабатывают высоковольтными скользящими разрядами непосредственно по поверхности воды, причем скорость нарастания напряжения ≥1013 В/с, а скорость спада ≥1012 В/с. Устройство включает камеру для обрабатываемой жидкости, высоковольтный источник питания, по крайней мере один высоковольтный электрод, расположенный непосредственно на поверхности воды, и заземленный электрод, расположенный на дне камеры. 2 с.п. ф-лы, 2 ил.

Формула изобретения RU 2 095 151 C1

1. Способ очистки и обеззараживания воды путем обработки ее скользящим импульсным разрядом по поверхности воды, возникающим от приложения высоковольтного импульсного напряжения с нарастающей скоростью и скоростью спада напряжения ≥1012 В/С, отличающийся тем, что скорость нарастания напряжения выбирают ≥1013 В/С, при этом величину напряжения выбирают не более пробивного напряжения слоя обрабатываемой воды и не менее величины напряжения, необходимого для развития скользящих разрядов и обеспечения величины удельного энерговклада за один разрядный импульс на литр обрабатываемой жидкости не менее 0,3 Дж/л. 2. Устройство для очистки и обеззараживания воды, включающее камеру для обрабатываемой жидкости, высоковольтный источник питания, по крайней мере один высоковольтный и заземленный электроды, отличающееся тем, что заземленный электрод расположен на дне разрядной камеры, а высоковольтный электрод выполнен с меньшей площадью, чем заземленный, и расположен на поверхности обрабатываемой воды.

Документы, цитированные в отчете о поиске Патент 1997 года RU2095151C1

RU, патент, 2004500, кл
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1

RU 2 095 151 C1

Авторы

Беляков И.И.

Месяц Г.А.

Новоселов Ю.Н.

Сурков Ю.С.

Даты

1997-11-10Публикация

1995-04-19Подача