Изобретение может быть использовано в качестве реактивной силовой установки непрерывной тяги, а также в качестве привода для вращения вала в транспортных средствах и машинах, работающих в пределах земной атмосферы.
Известен двигатель, содержащий систему запуска, воздухозаборник с эжектором на выходе для сжатия воздуха, поступающего через воздухозаборник, и камеру сгорания с выхлопным соплом и нагревательным устройством для нагрева горючего, преобразующего тепло в энергию давления [1] Этот двигатель относится к двигателям давления, где горючее прокачивается под напором через нагревательное устройство, испаряется и в качестве эжектирующего рабочего тела (ЭРТ) подается в прямоструйный эжектор. В эжекторе ЭРТ в виде струи пара горючего увлекает из окружающей среды воздух и сжимает его, нагнетая в камеру сгорания. Смесь пара горючего и воздуха сгорает в камере сгорания, давая энергию для реактивной тяги и нагрев горючего. Последовательно ступени сжатия паром горючего (перед ней) для увеличения степени сжатия в целом включены ступени сжатия выхлопными газами, действующие также способом прямоструйной эжекции.
Принцип эжекционного сжатия воздуха паром горючего с использованием нагревательного устройства для горючего является общим признаком вышеупомянутого изобретения и предмета данного изобретения. Однако такие отрицательные особенности как низкая степень сжатия прямоструйного эжектора, обратная взаимозависимость степени сжатия эжекторов и коэффициента эжекции, а следовательно расхода воздуха, разогрев и насыщение всасываемого воздуха продуктами сгорания, являются причиной низкой степени сжатия всей системы, а следовательно низкого давления в камере сгорания и низкого КПД. Устранение перечисленных недостатков стало возможным благодаря введению в конструкцию сепаратора, необходимого для разделения смеси, поступающей из эжектора, и выполнению самого эжектора вихревым с рубашкой охлаждения, соединенной с сепаратором и нагревательным устройством, а также благодаря отказу от эжектирования продуктами сгорания, что в совокупности воплощено в предлагаемом двигателе и отличает его от предшествующего. Кроме того, использование двигателя для совершения вращательной работы осуществлено в известном изобретении либо методом установки двигателя на лопасти винта, либо путем наддува турбины горячими выхлопными газами, что сопряжено в первом случае его сложностью питания, а во втором с наличием подвижного элемента с низкой надежностью и ресурсом из-за теплонапряженности. Предлагаемый двигатель использует в аналогичных целях устройство отбора вращательной мощности, которым снабжен детандер, а также турбину, расположенную в воздухозаборнике и работающую в потоке всасываемого воздуха при температуре окружающей среды, что не исключает применение выхлопной турбины, работающей в данном случае в менее энергонапряженном режиме, благодаря разгрузке ее детандером и входной турбиной. С целью утилизации отобранной от разделяемой смеси энергии сепаратор, размещенный между вихревым эжектором и камерой сгорания, выполнен в виде теплообменника на входе сепаратора, конденсатора на выходе сепаратора, а также энергоакцептора, размещенного между теплообменником и конденсатором и состоящего из детандера и дроссельного устройства, соединенных друг с другом, причем дроссельное устройство снабжено вихревой трубой, имеющей рубашку охлаждения.
Техническим результатом изобретения является двигатель с более высоким КПД за счет увеличения степени сжатия при достижении максимальной температуры сгорания.
Данный технический результат достигается за счет устранения зависимости процесса сжатия от процесса смесеобразования, а также за счет охлаждения сжимаемого воздуха с помощью устройств, входящих в ступень системы сжатия двигателя: сепаратора, разделяющего смесь, поступающую из вихревого эжектора, наддуваемого паром горючего, установленного между вихревым эжектором и камерой сгорания, а также рубашки охлаждения вихревого эжектора и коэффициента эжекции, количество ступеней сжатия может быть различным в зависимости от назначения двигателя и типа горючего.
На фиг. 1 представлена пневмогидросхема двигателя, где сплошными прямыми стрелками показано движение жидкого горючего, волнистыми горючего пара, пунктирными движение воздуха, двойными (сплошными и пунктирными) движение смеси воздуха и горючего пара, штрихпунктирными движение горючей смеси, двойными (сплошными и штрихпунктирными) движение откорректированной горючей смеси; на фиг. 2 график цикла работы горючего пара; на фиг. 3 график зависимости КПД двигателя от степени сжатия всасываемого воздуха и температуры нагрева газа, где σ степень сжатия, а T1 <T2 <Tст (Tст стехиометрическая температура сгорания); на фиг. 4 график зависимости коэффициента эжекции от степени сжатия эжектора, где коэффициент эжекции n Gв/Gэрт; Gв и Gэрт расходы воздуха и ЭРТ соответственно.
Описание работы двигателя.
Двигатель в случае использования его в качестве реактивной силовой установки работает следующим образом. Горючее под давлением, создаваемым насосом 1 (см. фиг. 1), нагнетается в соответствии с процессом 0-1 (см. фиг. 2) в нагревательное устройство 2, контактирующее с камерой сгорания 3 (применение описываемого способа нагрева является одним из известных вариантов использования в двигателестроении различных нагревательных устройств, каждое из которых может быть применено в данном двигателе в зависимости от его конкретного назначения), где оно (горючее) нагревается, испаряется и перегревается в соответствии с процессами 1-2, 2-3, 3-4. Перегретый пар горючего в качестве ЭРТ подается в сопловой аппарат 4 вихревого эжектора 5, где, совершая работу в соответствии с процессом 4-5, образует вихрь, сжимающий воздух, всасываемый через воздухозаборник 14. Вихревой эжектор 5 располагается на выходе воздухозаборника 14.
При проектировании эжектора 5 необходимо учитывать, что его степень сжатия должна соответствовать максимальному КПД двигателя для заданной температуры сгорания, которую также в целях повышения КПД следует выбирать максимальной, т. е. стехиометрической или близкой к ней (см. фиг. 3). Если повышение температуры сгорания в двигателях давления вполне возможно благодаря отсутствию теплонапряженных турбин, то выбор степени сжатия ограничен из-за обратной взаимозависимости ее и коэффициента эжекции эжектора (см. фиг. 4). А именно, в двигателях с непосредственным эжекторным наддувом камеры сгорания коэффициент эжекции определяет количество воздуха в смеси, поступающей из эжектора в камеру сгорания, которое не должно быть меньше количества, необходимого для гарантированного воспламенения и сгорания горючей смеси. Для наиболее употребимых штатных углеводородных горючих предел содержания воздуха в смеси составляет не менее 95-90% что соответствует избытку окислителя a ≈ 0,4 0,6 и коэффициенту соотношения компонентов K ≈ 6 - 9. В случае непосредственного наддува камеры сгорания эжектором с ЭРТ в виде пара горючего без использования ступеней с наддувом от выхлопных газов минимальное значение коэффициента эжекции (nэж) определяется минимально допустимым значением коэффициента соотношения компонентов nэж K
где Gв расход воздуха;
Gэрт расход ЭРТ;
Gгор расход горючего.
В двигателях с использованием в качестве ЭРТ выхлопных газов требуемый минимальный коэффициент эжекции больше коэффициента соотношения компонентов в виду наличия в эжектируемой в камеру сгорания среде отработанных газов, не поддерживающих горение, что требует снижения степени сжатия эжектора. Следовательно, при давлении подачи горючего, например Pэрт 300 ат, и температуре нагрева горючего пара Tэрт 300oC, взятых из условия удельной прочности и жаропрочности элементов выполненных двигателей, а также из условия термостабильности горючего, степень сжатия эжектора с гипотетическим КПД 99% при nэж≥ 6 может быть найдена путем решения системы уравнений, составленной на основе формулы КПД эжектора
где Tо.в. температура окружающего воздуха;
σ степень сжатия эжектора;
Kв, Kэрт соответственно показатели адиабаты воздуха и горючего пара;
e степень расширения ЭРТ (e Pэрт/Pвых, Pвых давление смеси на выходе из эжектора).
Система имеет вид
где Pвх давление воздуха на входе в эжектор.
Подставив вышеупомянутые значения и решив систему, не трудно увидеть, что при минимально допустимом nэж у эжектора с максимально возможным КПД (доли процента в пределах от 99 до 100% не окажут существенного влияния, следовательно возможное их достижение в расчет не берется), значение степени сжатия составит σ 1,735. Тогда как, согласно выражению для наивыгоднейшей степени сжатия (sн)
где ηсоп КПД реактивного сопла двигателя (как правило достаточно высок и составляет 0,95 0,98);
Tс температура нагрева газа (Tс ≈ 1200-1300 при α 0,4),
степень сжатия, соответствующая максимальному КПД двигателя, составляет sн 11. Например, для двигателя, летящего на высоте 10 км со скоростью V 250 м/с, при температуре нагрева газа Tс ≈ 1300 K, учитывая α 0,4, требуемая наивыгоднейшая степень сжатия составит sн 19, что соответствует степени сжатия эжектора
где σv степень сжатия от скоростного напора,
в связи с чем, коэффициент эжекции составит nэж=0,6. При непосредственном наддуве эжектором камеры сгорания, что свойственно конструкции существующих (эжекторных) двигателей давления, nэж=0,6 обеспечит в камере сгорания α 0,04, что в 10 раз ниже предельно допустимого для горения значения, указанного в условии. Устранение зависимости от коэффициента эжекции путем разделения процессов сжатия и смесеобразования позволяет повысить степень сжатия до наивыгоднейшего значения или близкого к нему, сохраненив расчетное a Так, из вышеописанного примера видно, что, например, при допустимом nэж 1 возможно увеличение степени сжатия до 8, а независимость a от nэж позволяет выбрать любое соотношение компонентов вплоть до a 1, что в условиях полета на вышеуказанной высоте и скорости, соответствует Tc≈2500 K. Полный КПД двигателя
,
выраженный через удельную тягу имеет вид
,
где A тепловой эквивалент работы;
R тяга;
Rуд удельная тяга;
V скорость полета;
Br расход газа через двигатель;
nu теплотворность горючего.
Если ,
то ,
где Cс скорость истечения газа из сопла, зависящая от температуры газа Tс и степени сжатия σ, выражена
где β газовая постоянная;
Pат атмосферное давление;
Pv давление набегающего воздуха;
k показатель адиабаты газа;
Pvσ давление в камере сгорания.
Выразив КПД через скорость истечения и обозначив параметры двигателя с независимым от альфы наддувом камеры сгорания как , Tc' k', β′, сравнивают его КПД (при прочих равных условиях) с КПД известных эжекторных двигателей
Подставив вышеупомянутые, принятые в качестве примера, значения, получают
Следовательно, при использовании одного и того же типа горючего и полете в равных условиях двух эжекторных двигателей одинаковых тяг, КПД двигателя s 8 благодаря независимому от a процессу эжекции в 2,5 раза выше (степень сжатия, равная 8, и соответствующее увеличение КПД двигателя не являются предельными для предлагаемого двигателя и взяты лишь в качестве примера). С целью разделения процессов смесеобразования и сжатия в предлагаемом двигателе предусмотрен сепаратор 6, выделяющий из смеси, выходящей из эжектора 5, лишнее горючее, делая смесь пригодной для горения. Таким образом, сепаратор выдает готовую для горения смесь, нуждающуюся лишь в частичной коррекции, посредством регулятора соотношения компонентов, в случае отклонения от расчетного значения. Сепаратор 6 состоит из теплообменника 7, энергоакцептора 8, представляющего собой комбинацию из таких устройств, как детандер 16, дроссель 17 и вихревая труба 18 с рубашкой охлаждения 19 (все эти устройства и их комбинации сами по себе хорошо известны, в связи с чем не нуждаются в описании) и конденсатор 9. Сепаратор 6 работает по принципу выхолаживания, что позволяет утилизировать отобранную от разделяемой смеси энергию. Горючий пар в смеси с воздухом из эжектора 5 поступает в теплообменник 7 сепаратора 6, где частично охлаждается согласно процессу 5-6, отдавая тепло холодному горючему, протекающему по жидкостному тракту теплообменника 7. Далее пар поступает в энергоакцептор 8, где окончательно охлаждается, совершая работу 6-7, после чего сконденсированное в процессе 7-0 лишнее горючее скапливается в конденсаторе 9 для подачи оттуда посредством насоса 1, через рубашку охлаждения 19 вихревой трубы 18, жидкостный тракт теплообменника 7 и рубашку охлаждения 10 эжектора 5 в нагревательное устройство 2, замыкая цикл. Рубашка охлаждения 10 эжектора 5 охлаждает сжимаемый воздух протекающим горючим, уменьшая потребную работу, идущую на сжатие, для использования сэкономленной ее части на увеличение коэффициента эжекции, облегчая таким образом работу сепаратора 6, увеличивая процент воздуха в смеси. Дополнительное тепло, поглощенное горючим в рубашке 19, теплообменинке 7 и рубашке 10, частично экономит энергию, затрачиваемую на нагрев горючего в нагревательном устройстве 2. Детандер 16 является приводом насосов 1 и 12. Готовая для горения смесь поступает из конденсатора 9 в следующую ступень для дальнейшего сжатия или в предкамерный вихревой смеситль 11, куда подается с тангенциальной составляющей пар горючего из нагревательного устройства 2 для коррекции и дополнительного перемешивания горючей смеси посредством вихря. Общее количество горючего, протекающего через двигатель, пополняется из бака посредством насоса 12 на величину расхода сгорающего горючего пара. Из предкамерного вихревого смесителя 11 смесь поступает в камеру сгорания 3, где сгорает при повышенном давлении, нагревая горючее в нагревательном устройстве 2 и образуя выхлопные газы. Выхлопные газы покидают камеру сгорания 3 через реактивное сопло 13, создавая тягу.
В случае необходимости совершения предлагаемым двигателем вращательной работы, преобразование энергии двигателя в энергию вращения вала осуществляется посредством установки в воздухозаборнике 14 турбины 15, работающей на отсос. Турбина 15 приводится во вращение воздухом, всасываемым эжектором 5 из внешней среды. Данный способ получения крутящего момента не исключает применение выхлопной турбины. Кроме того, для вращения используется энергия, отбираемая у детандера посредством устройства отбора вращательной мощности 20. Система запуска 21 не описана, т. к. является одной из хорошо известных пусковых систем, каждая из которых может быть применена в предлагаемом двигателе в зависимости от его конкретного назначения.
название | год | авторы | номер документа |
---|---|---|---|
ДВИГАТЕЛЬ, ИСПОЛЬЗУЮЩИЙ НЕМЕХАНИЧЕСКОЕ СЖАТИЕ ВОЗДУХА | 1999 |
|
RU2209327C2 |
СПОСОБ РАБОТЫ ПРЯМОТОЧНОГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2003 |
|
RU2264554C2 |
АВТОНОМНЫЙ ИСТОЧНИК ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИИ | 2004 |
|
RU2272919C2 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В МЕХАНИЧЕСКУЮ В ГАЗОТУРБИННОМ ДВИГАТЕЛЕ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 1992 |
|
RU2036325C1 |
РОТОРНЫЙ ДВИГАТЕЛЬ | 1995 |
|
RU2095589C1 |
ТРАНСПОРТНЫЕ ГАЗОТУРБИННЫЕ ДВУХВАЛЬНЫЙ И ТРЕХВАЛЬНЫЙ ДВИГАТЕЛИ (ВАРИАНТЫ) | 1997 |
|
RU2126906C1 |
СПОСОБ ПОЛУЧЕНИЯ ПИКОВОЙ МОЩНОСТИ НА ПАРОГАЗОВОЙ ГАЗОТУРБИННОЙ УСТАНОВКЕ И ПАРОГАЗОВАЯ УСТАНОВКА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 1992 |
|
RU2076929C1 |
Эжекционно-вихревой двигатель | 2023 |
|
RU2827018C1 |
ДВИГАТЕЛЬ | 1992 |
|
RU2066777C1 |
ПАРОГАЗОВАЯ УСТАНОВКА | 2004 |
|
RU2296872C9 |
Использование: в качестве реактивной силовой установки, а также привода вала. Сущность изобретения: двигатель, использующий энергию нагретого пара горючего, содержит элемент, преобразующий тепло в энергию давления, в виде горючего, контактирующего с нагревательным устройством 2, само нагревательное устройство 2, камеру сгорания 3 с выхлопным соплом 13, воздухозаборник 14, систему запуска 21, вихревой эжектор 5 с рубашкой охлаждения 10, расположенный на выходе воздухозаборника 14, сепаратор 6, предназначенный для разделения смеси, поступающей из эжектора 5, и расположенный между эжектором 5 и камерой сгорания 3. Камера сгорания 3 снабжена предкамерным вихревым смесителем 11, воздухозаборник 14 может быть оснащен турбиной 15, а сепаратор 6 содержит на входе теплообменник 7, на выходе - конденсатор 9 и расположенный между ними энергоакцептор 8, состоящий из соединенных параллельно детандера 16, оснащенного устройством 20 для отбора мощности вращения, и дроссельного устройства 17, снабженного вихревой трубой 18 с рубашкой охлаждения 19. Эжектор и сепаратор являются одной ступенью сжатия. 1 з. п. ф-лы, 4 ил.
РСТ, заявка, W0 91/16535, кл | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1997-11-10—Публикация
1995-10-05—Подача