СПОСОБ ЭКСПЛУАТАЦИИ ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ С МИКРОЗАЗОРОМ Российский патент 1997 года по МПК H01J45/00 

Описание патента на изобретение RU2096858C1

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую и может быть использовано при создании энергоустановок с относительно низкими рабочими температурами эмиттера и расположенными вне активной зоны ядерного реактора, в солнечных энергоустановках и нагреваемых за счет сгорания органического топлива.

Термоэмиссионный преобразователь (ТЭП) с микрозазором содержит плоские электроды в виде нагреваемого эмиттера и охлаждаемого коллектора, систему дистанционирования из керамического электроизолятора, токовыводы от эмиттера и коллектора, причем один или оба электрода электроизолированы от корпуса, в котором размещена эмиттерно -коллекторная сборка. В таком ТЭП реализуются межэлектродные зазоры (МЭЗ) менее 0,05 мм и получены плотности мощности более 1 Вт/см2 при температуре эмиттера Tэ менее 1450 K.

Известен способ эксплуатации ТЭП в дуговом режиме работы, при котором в МЭЗ создают условия для возникновения низковольтного дугового разряда [1] Для этого в МЭЗ подают пар цезия при давлении 0,5 10 мм рт.ст. При нагреве эмиттера ТЭП электроны, ускоренные на скачке потенциала у эмиттера термализуются, разогреваясь при этом до температуры 2800 3200 K. При столкновении этих электронов с атомами цезия в процессе термической ступенчатой ионизации образуются ионы и в МЭЗ возникает плазма, обеспечивающая прохождение тока от нагреваемого эмиттера к охлаждаемому коллектору. Такой ТЭП может работать при Te 1500 2100 K и в зависимости от Te, величины МЭЗ и других факторов и обеспечивает генерирование плотности электрической мощности 2 15 Вт/см2 и выше. Такие ТЭП применялись в космических ядерно -энергетических установках (ЯЭУ) типа "Топаз".

Однако при эксплуатации ТЭП в дуговом режиме реализуются относительно низкие КПД (7 15%). Это связано с тем, что процесс термической ионизации требует разогрева всех эмиттированных электронов, что приводит к значительным потерям, в сотни раз превышающим необходимые для ионообразования энергетические затраты.

Наиболее близким к изобретению по технической сущности является способ эксплуатации ТЭП в кнудсеновском режиме работы преобразователя, описанный в [2] Для работы в таком режиме создаются условия, при которых средняя длина свободного пробега электронов 1 заметно превышает величину МЭЗ L, а генерация ионов происходит на поверхности эмиттера и практически не требует затрат энергии на ионообразование и на прохождение тока через МЭЗ. В таком режиме плотность проходящего тока j может быть близка к плотности тока эмиссии с эмиттера jR, барьерный индекс B к работе выхода коллектора, Фc, а генерируемое напряжение к контактной разности потенциалов электродов Фe Фc, где Фe работа выхода эмиттера.

В принципе в таком режиме эксплуатации возможно получение высокого КПД, близкого к КПД идеального ТЭП. Однако для эффективности поверхностной ионизации требуется Фe примерно 3 эВ, при которой для получения jR 5 15 А/см2 необходимо иметь Te, равную примерно 2000 К. Другое ограничение связано с требованием, чтобы длина свободного пробега электрона l заметно превышала L. Вследствие этого для типичных МЭЗ в 0,5 мм столкновения с атомами цезия ограничивают давление пара цезия PCs величиной 5•10-2 мм рт.ст. а кулоновское рассеяние электронов ионами цезия ограничивает возможную величину плотности тока. Поскольку вакуумная работа выхода металлов лежит в интервале 4 5,5 эВ, кнудсеновский режим эксплуатации ТЭП с цезиевым наполнением может быть осуществлен при условиях
2,3 <Te/Tr <3,8 (1)
Te/Tr > 6,5 (2)
Нетрудно оценить, что при PCs 10-2 мм рт.ст. (Tr 425 K) при Te/Tr > 3,8 плотность тока эмиссии не превышает 10-1 А/см2, а при Te/Tr > 6,5 температура эмиттера более 2600 К. Поэтому ТЭП в кнудсеновском режиме работы при заполнении МЭЗ лишь паром цезия всегда работает в неоптимальном перекомпенсированном режиме, при котором Фe велика, а плотность тока и КПД низки. Для уменьшения работы выхода эмиттера МЭЗ может быть заполнен смесью паров цезия и бария. Однако барий, адсорбируясь на коллекторе, повышает его работу выхода до 2,2 эВ, что приводит к снижению на 0,5 0,6 В по сравнению с цезиевым режимом работы внешнюю контактную разность потенциалов Фec и соответственно рабочее напряжение ТЭП. В результате КПД в таком режиме ниже, чем в чисто цезиевом режиме работы. Реально преимущества работы ТЭП в кнудсеновском режиме начинают проявляться при Te выше 2300 К, что не позволяет использовать его в практике из-за отсутствия высокотемпературных источников тепла и материалов, сохраняющих длительную работоспособность при таких температурах.

Техническим результатом, достигаемым при использовании изобретения, является обеспечение возможности эксплуатации ТЭП в кнудсеновском режиме с высокими значениями плотности электрической мощности и КПД и приемлемой для практики температурой эмиттера.

Указанный технический результат достигается в способе эксплуатации ТЭП с микрозазором (10 30 мкм), включающем нагрев эмиттера и охлаждение коллектора и подачу пара цезия в МЭЗ, в котором давление пара цезия в МЭЗ должно соответствовать давлению насыщенного пара при температуре Tr, определяемой соотношением.

Tr <3740 / [6,78 lg (6•10-3/l)] (3)
а рабочая температура эмиттера Te выбрана из соотношения
Te (Tr±20) • (0,71Фc 1,15) (4)
где Te и Tr в K, а Фo вакуумная работа выхода материала эмиттера.

На чертеже представлены так называемые кривые Рейвора, определяющие значения работы выхода поверхностей металлов в паре цезия в зависимости от их вакуумной работы выхода Фo и отношения температуры поверхности T (в нашем случае Te) к температуре цезиевого резервуара Tr. Пунктирная линия на этом рисунке соответствует условию a 1, когда достигается максимальная мощность кнудсеновского режима работы ТЭП. Здесь a - параметр компенсации объемного заряда, который в кнудсеновском режиме определяется соотношением
a (Ji/Je)(M/m) (5)
где Ji плотность ионного тока, идущего с эмиттера, Je - плотность тока электронной эмиссии, M/m отношение масс ионов (цезия) и электронов.

Выше пунктирной линии повышается ионная составляющая полного тока, ниже линии электронная составляющая.

Система кривых Рейвора при различных возможных значениях Фo тугоплавких металлов имеет участок, где линия a=1 пересекает их при условиях, которые соответствуют всем требованиям, позволяющим осуществить цезиевый кнудсеновский режим работы ТЭП с плотностью тока эмиссии 5 15 А/см2 при относительно невысоких температурах эмиттера в 1700 2100oK с использованием реально существующих тугоплавких эмиттерных материалов, имеющих вакуумную работу выхода 4,0 5,5 эВ.

Формула (3) получена из анализа кривых Рейвора (фиг.1) и погрешностью ± 20 K определяет конкретную температуру цезиевого резервуара Tr, при которой при заданных Фo и Te выполняется условие a=1. Оценочная погрешность определяется погрешностью самих кривых Рейвора, а также оценочным характером проведенных расчетов. Отметим также, что при больше 1 в кнудсеновском режиме возникают колебания тока и для устойчивости необходимо работать в слегка недокомпенсированном режиме с a=1.

Формула (4) выражает требование к температуре Tr, обеспечивающей выполнение условий работы ТЭП в кнудсеновском режиме, когда l должна быть больше L. Длина свободного пробега электронов при их столкновениях с атомами определяется выражением, см:
L (6•10-3)PCs. (6)
Влияние кулоновских столкновений при плотностях тока меньших 20 А/см2 и L порядка нескольких десятков микрон незначительно и может не приниматься во внимание. Давление пара цезия в зависимости от Tr описывается приближенной формулой [3]
lg PCs 6,78 3740/Tr (7)
Подставляя выражения (6) и (7) в условие выполнения кнудсеновского режима работы (l немного больше L) получим формулу (4).

Эксплуатация ТЭП с микрозазором осуществляется следующим образом.

Зная Фo выбранного эмиттерного материала по (3) определяют необходимую температуру цезиевого резервуара, а затем по (4) и требуемую рабочую температуру эмиттера Te. Повышая Te и Tr до требуемых значений осуществляют эксплуатацию ТЭП с микрозазором в оптимальном кнудсеновском режиме.

Эффективность предложенного технического решения была проверена расчетным путем.

Получены расчетные значения плотности кнудсеновского режима работы ТЭП с микрозазором в 10 30 мкм, удовлетворяющим указанным выше требованиям при различных температурах эмиттера. Работа выхода коллектора принималась равной 1,55 эВ, работа выхода эмиттера рассчитывалась по кривым Рейвора, а уменьшение плотности тока вследствие редких столкновений рассчитывалось по формуле
J Jr [1 + 3L/(8l)] (8)
При температуре эмиттера в 1800 2000 К получены плотности мощности в 5 15 Вт/см2 при КПД более 20%
Такой ТЭП может быть использован в качестве основы ядерных энергоустановок с расположенным вне активной зоны преобразователем блоком, солнечных энергоустановок с концентратором солнечной энергии и в энергоустановках, нагреваемых сгоранием органического топлива.

Похожие патенты RU2096858C1

название год авторы номер документа
КНУДСЕНОВСКИЙ ТЕРМОЭМИССИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ 1998
  • Кучеров Р.Я.
  • Синявский В.В.
RU2139591C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ МЕЖЭЛЕКТРОДНОГО ЗАЗОРА ЭЛЕКТРОГЕНЕРИРУЮЩИХ ЭЛЕМЕНТОВ ПРИ ПЕТЛЕВЫХ ИСПЫТАНИЯХ ТЕРМОЭМИССИОННЫХ ЭЛЕКТРОГЕНЕРИРУЮЩИХ КАНАЛОВ 1989
  • Синявский Виктор Васильевич
  • Бабушкин Юрий Владимирович
SU1840160A1
СПОСОБ ОПРЕДЕЛЕНИЯ ЧИСЛА РАБОТОСПОСОБНЫХ ЭЛЕМЕНТОВ В ЭЛЕКТРОГЕНЕРИРУЮЩЕМ КАНАЛЕ ВО ВРЕМЯ ПЕТЛЕВЫХ ИСПЫТАНИЙ 1989
  • Макеев Анатолий Анатольевич
  • Синявский Виктор Васильевич
SU1840232A1
ИСТОЧНИК ПАРА ЦЕЗИЯ ДЛЯ ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ 1998
  • Кучеров Р.Я.
  • Синявский В.В.
RU2137248C1
ТЕРМОЭМИССИОННЫЙ СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ 1991
  • Бабанин Валентин Иванович
  • Кузнецов Виктор Иосифович
  • Колышкин Игорь Николаевич
  • Ситнов Валерий Иванович
  • Эндер Андрей Яковлевич
RU2030017C1
ТЕРМОЭМИССИОННАЯ ЭЛЕКТРОГЕНЕРИРУЮЩАЯ СБОРКА С ПЛОСКОЦИЛИНДРИЧЕСКОЙ КОНФИГУРАЦИЕЙ ЭЛЕКТРОДОВ 2000
  • Синявский В.В.
RU2195741C2
ПЕТЛЕВОЕ УСТРОЙСТВО ДЛЯ ИСПЫТАНИЙ ТЕРМОЭМИССИОННОЙ ЭЛЕКТРОГЕНЕРИРУЮЩЕЙ СБОРКИ И СПОСОБ ИСПЫТАНИЙ ПЕТЛЕВОГО УСТРОЙСТВА С ТЕРМОЭМИССИОННОЙ ЭЛЕКТРОГЕНЕРИРУЮЩЕЙ СБОРКОЙ 2005
  • Синявский Виктор Васильевич
RU2296388C2
СПОСОБ ПЕТЛЕВЫХ РЕАКТОРНЫХ ИСПЫТАНИЙ ТЕРМОЭМИССИОННЫХ ЭЛЕКТРОГЕНЕРИРУЮЩИХ СБОРОК 1994
  • Синявский В.В.
RU2068598C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ МОЩНОСТИ ТЕРМОЭМИССИОННОЙ СБОРКИ ПРИ ПЕТЛЕВЫХ РЕАКТОРНЫХ ИСПЫТАНИЯХ 1996
  • Королев В.У.
  • Синявский В.В.
RU2095882C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ МЕЖЭЛЕКТРОДНОГО ЗАЗОРА ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ 1990
  • Синявский В.В.
RU1804237C

Реферат патента 1997 года СПОСОБ ЭКСПЛУАТАЦИИ ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ С МИКРОЗАЗОРОМ

Назначения: изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую. Сущность изобретения: давление пара цезия в межэлектродном зазоре устанавливают равным равновесной температуре Tr[K], определяемой соотношением Tr < (3740/(6,78 - lg(6•10-3/L), где L - величина межэлектродного зазора, мм, а рабочая температура эмиттера Te[K] выбрана по выражению Te = (Tr ± 20 К)•(0,71 Фo - 1,15), где Фo - вакуумная работа выхода материала эмиттера, В. 1 ил.

Формула изобретения RU 2 096 858 C1

Способ эксплуатации термоэмиссионного преобразователя с микрозазором, включающий нагрев эмиттера, охлаждение коллектора и подачу пара цезия в межэлектродный зазор, отличающийся тем, что давление пара цезия в межэлектродном зазоре устанавливают равным давлению насыщенного пара при температуре Tr [K]
Tr < 3740/[6,78 lg(6•10-3/L)]
где L величина межэлектродного зазора, мм,
а рабочая температура эмиттера Te [K] выбрана из соотношения
Te = (Tr ± 20 K)•(0,71 Фo - 1,15),
где Фo вакуумная работа выхода материала эмиттера, эВ.

Документы, цитированные в отчете о поиске Патент 1997 года RU2096858C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Бакшт Ф.Г
и др
Термоэмиссионные преобразователи и низкотемпературная плазма
Наука, 1973
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Бабанин В.И
и др
Исследование ТЭП с Cs - Ba наполнением в перекомпенсированном кнудсеновском режиме
ЖТФ, т
Устройство для усиления микрофонного тока с применением самоиндукции 1920
  • Шенфер К.И.
SU42A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Устройство для обнаружения местоположения затонувших кораблей 1924
  • Мухартов И.Ф.
SU1662A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Rasor N.S
Thermionic Energy Conversion plasmas., IEEE Transaction on Plasma Science., Vol
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора 1921
  • Андреев Н.Н.
  • Ландсберг Г.С.
SU19A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Прибор для вытаскивания дымогарных труб 1924
  • Гринев Ф.Г.
  • Громов И.С.
  • Лысенков А.К.
SU1191A1

RU 2 096 858 C1

Авторы

Кучеров Рафаил Яковлевич

Николаев Юрий Вячеславович

Синявский Виктор Васильевич

Даты

1997-11-20Публикация

1996-02-29Подача