Изобретение относится к области очистки сточных вод.
Известен способ очистки бытовых и городских сточных вод в биологических прудах путем внесения в них комплекса зеленых, синезеленых и диатомовых водорослей [1] Способ обеспечивает снижение БПК5 в среднем до 18,35 мг/л, а ВБКполн до 24,2 мг/л.
Такое качество воды не отвечает требованиям по сбросу сточных вод в рыбохозяйственный водопоток второй категории.
Кроме того, используемые в [1] синезеленые водоросли в количестве 1 млрд. клеток/л при внесении в сточную воду обуславливают накопление биомассы в 1 г/л и более воздушносухого вещества, что приводит к существенному снижению уровня кислородной насыщенности воды, а это также идет в разрез требованиям по сбросу стоков в рыбохозяйственный водопоток. Такую воду необходимо подвергать дополнительной очистке и доочистке.
Известен также способ доочистки сточных вод путем пропускания их через естественное биоплато, представляющее собой обвалованный участок болота; величина БПК в результате такой доочистки становится равной 150 ± 50 мг/л, а концентрация солевого аммиака 16,1 ± 2,0 мг/л [2]
Существует также способ доочистки дренажных вод после полей орошения путем пропускания их через одно из болот бассейна Ладожского озера; это позволяет снизить величину БПК до 3,9 мг/л, концентрацию солевого аммиака до 1,4 мг/л [3] Однако, как во [2] так и в [3] не достигаются величины БПК и солевого аммиака, разрешенных санитарными органами для сброса в рыбохозяйственный водоток второй категории.
Отличие заявленного способа от известного заключается в том, что сточную воду дополнительно очищают на биоплато, представляющего собой слабовыраженный по рельефу участок поверхности земли с высшей водной растительностью, имеющий уклон в сторону водоприемника, и на естественном болоте за счет контакта с высшей водной растительностью и болотным биозенозом.
Целью изобретения является повышение степени и упрощение процесса очистки сточных вод для последующего их сброса в рыбохозяйственный водоток второй категории.
Поставленная цель достигается тем, что вначале, согласно предлагаемому способу, сточную воду подвергают обеззараживанию в биологических прудах путем внесения в нее зеленых (Chlorella vulgaris, Scenedesmus sp.) синезеленых (Osciellatoria sp. Anabaena sp.) и диатомовых (Navicula radiosa) водорослей. Водоросли вносятся в сточную воду в количестве 4,99•105 кл/мл и равных соотношениях. Это обеспечивает при установлении положительных температур воздуха через 10-13 сут. с момента инокуляции и контактном режиме работы тотальное отмирание в сточной воде патогенной микрофлоры, включая энтеровирусы, и содержание растворенного кислорода на уровне 8,6-12,8 мг/л.
Данную концентрацию микроводорослей (4,99•105 кл/мл) и равные их соотношения следует считать оптимальными; увеличение доли какого-либо из представителей водорослей нецелесообразно так как ведет к нарушению процессов самоочищения и фотосинтеза в целом.
Так, если будет увеличена доля синезеленых водорослей и биомасса их будет ≥ 1,0 г/л сухо-воздушного вещества, то это приведет к существенному снижению уровня кислородного насыщения [4]
Если будет увеличена концентрация Scenedesmus sp. то усилится его отрицательное влияние на развитие дикорастущей флоры, также принимающей участие в процессах самоочищения [5] Если исключить из числа вносимых водорослей диатомовые, то это отрицательным образом скажется на скорости фотохимических реакций фотосинтеза [4] Ниже приведены данные, полученные авторами по влиянию разного количества микроводорослей в биопрудах производственного масштаба на степень отмирания бактерий Е. coli (выраженной величиной коли индекса) и уровень кислородного насыщения воды (табл. 1).
По достижению требуемого эффекта обеззараживания, биопруды переводятся на проточный режим работы, а обеззараженный сток сбрасывается на естественное биоплато.
Оно представляет собой слабовыраженную по рельефу площадку, где имеется уклон в сторону предполагаемого водоприемника, с лугопастбищными травами и высшей водной растительностью, представленной в основном рогозом (52%) тростником (38%) и чередой (13%). Плотность посадки составляет в среднем 160 экз/м2. Скорость очищаемой воды по поверхности биоплато колеблется от 0,01 до 0,003 м/с, высота слоя воды, напускаемой на поверхность биоплато, составляет 0,1-0,2 м. В результате медленного движения жидкости по площади биоплато из нее удаляются взвешенные вещества, включая микроводоросли, часть биогенов, происходит осветление воды, в ней снижается концентрация минеральных и органических веществ.
После биоплато доочистка сточной воды завершается на естественном болотистом участке, непосредственно примыкающего к биоплато, и покрытого высшей водной растительностью (камыш 65% рогоз 24% череда 11%) с густотой растений 75 экз/м2. Скорость движения сточной воды на этом участке равна 0,001 м/с, а высота напуска жидкости составляет 0,45 м. На этом участке в процессах биоокисления, адсорбции и фильтрации сточной жидкости принимает участие не только высшая водная растительность, вегетирующая на поверхности, но и биоценозы болота, включая и его растительные ассоциации.
На этом участке происходит более глубокая доочистка стоков вследствие их прохождения по полостям, имеющимся в донных слоях болота, и через них частичное достижение водоприемника.
Основная часть потока сточной воды поступает в реку через водоотводной канал с водосбросным сооружением каскадного типа. Здесь обеспечивается дополнительное, более чем в 2 раза насыщение жидкости, сбрасываемой в водоток, растворенным кислородом.
Способ осуществляется следующим образом. Сточными водами сахарного завода, состоящими на 81% из промстока, 17% хозбытовой сточной жидкости и 2% стока от больничного корпуса, наполняют биологические пруды на глубину от 0,8 до 1,2 м. Затем их переводят на контактный режим и вносят суспензию микроводорослей, состоящую из зеленых (Chlorella vulgaris, Scenedesmus sp.), синезеленых (Oscillatoria sp. Anabaena sp.) и диатомовых (Navicuia radiosa) водорослей в концентрации 4,99 10 кл/мл и соотношении 1:1:1. Через 10-13 сут, когда процесс биологического обеззараживания сточной воды заканчивается (коли индекс не превышает 1000 и уровень насыщения растворенным кислородом находится в пределах 8,6-12,8 мг/л), ее начинают сбрасывать на биоплато. Сброс осуществляется таким образом, чтобы высота слоя воды на поверхности биоплато составляла 0,1-0,2 м, а скорость движения сточной жидкости 0,01-0,003 м/с. В результате пропускания обеззараженных стоков через биоплато с высшей водной растительностью и лугопастбищными травами эффект очистки в среднем составил: по величине снижения БПКполн 92,9% по снижению азота аммонийных солей 95,6% по взвешенным веществам 96,54% по железу общему 37,7% по фенолам 99,35% Полученные показатели, а именно такие, как БПК, азот аммонийных солей, значительно меньше аналогичных, опубликованных в [2] где в качестве способа доочистки сточных вод используется естественное биоплато, представляющее из себя обвалованный участок болота.
Дальнейшая доочистка сточной воды завершается на естественном болотистом участке. Сброс осуществляется таким образом, чтобы высота напуска воды составляла 0,45 м, а скорость движения жидкости 0,001 м/с. При пропускании через болото эффект очистки сточной воды повышается и составляет в среднем по БПКполн 98,53% по азоту аммонийных солей 100% взвешенным веществам 98,2% по железу общему 100% фенолам 99,78% Полученные данные, к примеру величина БПК, азота аммонийных солей существенно ниже, чем в [3] где доочистка сточных вод осуществляется через одно из болот бассейна Ладожского озера.
Затем очищенные сточные воды по многоступенчатому водосбросному сооружению каскадного типа отводятся в рыбохозяйственный водоток 2 категории. Следовательно, технологический результат, который обеспечивается вследствие использования предлагаемого изобретения, а именно повышение степени чистоты сточной воды при сбросе ее в поверхностный водоток рыбохозяйственного назначения может быть достигнут. При этом обеспечивается и значительное уменьшение в сбросном стоке таких химических элементов, как азот, фосфор, калий, натрий, кальций, магний. Через 43 дня после завершения сброса в сточной воде снижение содержания было по азоту на 100% фосфору на 58,4% калию на 93% кальцию на 50% натрию на 88% магнию на 85% Извлекаемость ряда биогенных и минеральных элементов высшей водной растительностью представлена в табл. 2.
Эффективность очистки по предлагаемому способу представлена в табл. 3.
Сравнительные данные предлагаемого способа с известными приведены в табл. 4.
Предлагаемое изобретение позволяет значительно сократить капитальные затраты, трудовые ресурсы, упростить эксплуатацию системы водоотведения предприятия, легко интегрирует в природный ландшафт.
В табл. 5 показано влияние количества растений, произрастающих в целом на биоплато, на снижение солесодержания в сточной воде; показано, как изменяется при этом зольность растений в зависимости от их количества и накопления ими минеральных веществ, в результате чего имеет место снижение сухого остатка воды.
Из данных табл. 5 видно, что количество растений, равное (160+75) экз. в целом на всем биоплато, включая болото, следует считать оптимальным, поскольку при таком количестве растений на 1 м отмечена их большая зольность, то есть они больше накапливают минеральных веществ и величина минерализации воды, отсюда наименьшая.
Как было показано выше, скорость течения на биоплато должна быть в пределах 0,01-0,003 м/с. Соблюдение такой скорости дает возможность сточной жидкости медленно протекать в зарослях высшей водной растительности и контактировать с нею; это способствует освобождению обезвреженной жидкости от взвешенных веществ, части биогенов, минеральных и органических веществ. Этому способствует еще и то обстоятельство, что площадка биоплато представляет собой слабовыраженный участок местности с высшей водной растительностью, по которой очищаемая жидкость должна двигаться лишь с небольшой скоростью.
В предлагаемом изобретении биоплато представляет собой еще и горизонтальный мелководный резервуар-отстойник, и для него поэтому правомерны все гидравлические закономерности отстойных сооружений канализации. Так согласно [6, 7] для эффективного задержания взвешенных веществ горизонтальная скорость движения жидкости в таком сооружении должна быть в пределах от 0,001 до 0,01 м/с.
Кроме того, устройство самого биоплато рассчитано так, что скорость течения сточной жидкости на нем постоянно уменьшается. Так, если вначале биоплато она не превышает 0,01 м/с, то на участке, непосредственно примыкающем к болоту, где эффект очистки сточной воды должен быть более высоким, эта скорость должна составлять 0,003 м/с.
На основании натурных исследований при скорости течения 0,003 м/с был получен наивысший эффект задержания взвешенных веществ, снижения БПК, азота аммонийных солей и сухого остатка. В табл. 6, приведены результаты натурных испытаний.
Л И Т Е Р А Т У Р А
1. Авт. свид. СССР N 234244, С 02 F 3/32, 1977.
2. Эйнор Л.О. Макрофиты в экологии водоема. М. Издательство институтата водных проблем, РАН, 1992.
3. Лобанов А. В. Казначеева О.Е. Доочистка дренажных стоков с полей орошения в условиях бассейна Ладожского озера. Сб. научн. тр. "Экологические и технико-экономические аспекты утилизации сточных вод и животноводческих стоков". М. 1990.
4. Сиренко Л.А. Физиологические основы размножения синезеленых водорослей в водохранилищах. Киев: Наукова Думка, 1972.
5. Марков П. К. и др. Глубокая доочистка сточных вод в биологических прудах (обзор), М. 1978.
6. Яковлев С.В. Калицун В.И. Механическая очистка сточных вод. М. Стройиздат, 1972.
7. Санитарные нормы и правила, СНиП 2.04.03-85.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД | 2005 |
|
RU2312072C2 |
СПОСОБ И СООРУЖЕНИЕ ОЧИСТКИ ХОЗЯЙСТВЕННО-БЫТОВЫХ СТОЧНЫХ ВОД С ИСПОЛЬЗОВАНИЕМ ЭЛЕМЕНТОВ ЭКОЛОГИЧЕСКОЙ СИСТЕМЫ | 2008 |
|
RU2397149C1 |
СПОСОБ БИОЛОГИЧЕСКОЙ ДООЧИСТКИ СТОЧНЫХ ВОД | 2000 |
|
RU2186738C2 |
НАПЛАВНЫЕ СЕКЦИОННЫЕ РАСТИТЕЛЬНЫЕ БИОПЛАТО ДЛЯ УТИЛИЗАЦИИ ЗАГРЯЗНЕНИЙ В СТОКАХ | 2019 |
|
RU2734251C1 |
Способ комплексной очистки сложных многокомпонентных сточных вод | 2020 |
|
RU2758690C1 |
Устройство для очистки сточных вод | 1990 |
|
SU1756288A1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ЖИВОТНОВОДЧЕСКИХ КОМПЛЕКСОВ, ФЕРМ И ПТИЦЕФАБРИК С ПОМОЩЬЮ АДАПТИРОВАННОГО КОМПЛЕКСА МИКРОВОДОРОСЛЕЙ, ВЫСШЕЙ ВОДНОЙ РАСТИТЕЛЬНОСТИ, ЗООПЛАНКТОНА И РЫБЫ | 1998 |
|
RU2140735C1 |
Способ биологической очистки сточных вод | 1979 |
|
SU789429A1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД | 1997 |
|
RU2120418C1 |
Способ очистки сточных вод | 1980 |
|
SU937353A1 |
Использование: биологическое обеззараживание, очистка и доочистка сточных вод сахарных заводов. Сущность изобретения: сточную воду подвергают обеззараживанию в биологических прудах путем внесения в нее зеленых, сине-зеленых и диатомовых микроводорослей в соотношении 1:1:1 и концентрации 4,99•105 кл/мл. Затем воду сбрасывают на биоплато, представляющее собой слабовыраженный по рельефу участок поверхности земли с высшей водной растительностью при густоте посадки 160 экз/м2, скорости течения 0,01-0,003 м/с и высоте напуска стока 0,1- 0,2 м. Окончательно воду очищают на естественном болоте с высшей водной растительностью с густотой посадки 75 экз/м2, скоростью течения 0,001 м/с и высотой напуска 0,45 м. 3 з.п. ф-лы, 6 табл.
SU, авторское свидетельство, N 234244, кл | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1997-12-27—Публикация
1996-03-05—Подача