СПОСОБ БОРЬБЫ С ОТЛОЖЕНИЯМИ ПАРАФИНА С ПОМОЩЬЮ МИКРООРГАНИЗМОВ Российский патент 1997 года по МПК E21B37/06 

Описание патента на изобретение RU2100575C1

Изобретение относится к области нефтедобывающей промышленности, в частности, к способам борьбы с отложениями парафина в нефтепромысловом оборудовании и призабойной зоне добывающих скважин.

Известны способы борьбы с отложениями парафина, например, путем закачки в затрубное пространство скважины или прокачки через трубопровод горячей нефти до полной ликвидации отложений парафина [1] или закачки в скважину, на основе толуола, скипидара, оксиэтилированного алкилфенола и газового бензина [2] бензина, керосина, лигроина, дизтоплива в сочетании с механической очисткой [3] Все эти способы предусматривают использование дорогих и токсичных реагентов.

Наиболее близким к предлагаемому по технической сущности является способ борьбы с парафиноотложениями с помощью микроорганизмов [4] Сущность способа заключается в закачке в скважину нефти и микроорганизмов, среди которых преобладают анаэробы, с последующей остановкой скважины на несколько суток. В результате жизнедеятельности микроорганизмы переводят длинноцепочечные молекулы твердых парафинов в жидкое состояние.

К недостаткам способа можно отнести следующие:
высокая вероятность неконтролируемого развития анаэробных микроорганизмов в системе промыслового сбора и подготовки нефти;
технические трудности в работе с анаэробными микроорганизмами;
необходимость дополнительной закачки нефти в качестве питательного субстрата;
относительно медленный рост микроорганизмов (увеличение численности в 5 раз за 10-12 сут).

Все вышесказанное ведет к снижению эффективности борьбы с парафиноотложениями.

Целью предлагаемого способа является повышение его эффективности.

Цель достигается тем, что в способе борьбы с отложениями парафина с помощью микроорганизмов используют аэробные углеводород-окисляющие микроорганизмы, суспензию которых в водном растворе минеральный солей вводят в затрубное пространство добывающей скважины, после чего осуществляют циркуляцию этого раствора путем соединения выкидной линии скважинного насоса с затрубным пространством скважины и включения насоса; перед введением в скважину суспензии микроорганизмов с раствором минеральных солей осуществляют подсос воздуха в затрубное пространство путем снижения уровня жидкости в затрубном пространстве со статического до динамического; при наличии отложений парафина в трубопроводе суспензию микроорганизмов с раствором минеральных солей из скважины после его циркуляции подают в трубопровод до снижения стабилизации перепада давления в нем; при загрязнении призабойной зоны скважины суспензию микроорганизмов ее циркуляции продавливают в нефтеносный пласт; в суспензию микроорганизмов добавляют неионогенные поверхностно-активные вещества (НПАВ) типа оксиэтилированных изононилфенолов в количестве до 2 мас.

Заявленный способ отличается от прототипа использованием других микроорганизмов, а также наличием новых операций.

Нам неизвестно осуществление таких операций при использовании микроорганизмов для уничтожения парафиноотложений, следовательно, заявленный способ отвечает критерию изобретения "новизна".

Использование в качестве микроорганизмов аэробных углеводородокисляющих бактерий (УБ) дает целый ряд преимуществ по сравнению с прототипом:
поскольку для развития УБ нужен кислород, то устраняется опасность их бесконтрольного распространения в анаэробных условиях закрытой системы сбора и транспорта нефти;
доставка и хранение их несложны;
использование УБ устраняет необходимость дополнительной закачки нефти, так как питательным субстратом являются сами отложения парафина;
при наличии азот- и фосфорсодержащих солей и воздуха УБ развиваются достаточно интенсивно.

Другим отличием предлагаемого способа является осуществление циркуляции раствора минеральных солей с микроорганизмами внутри скважины с целью его аэрации.

Известна циркуляция закачиваемых в скважину агентов (2), однако для ее осуществления используют специальное оборудование насосный агрегат, что усложняет способ, так как необходимо подбирать производительность агрегата соответственно параметрам скважины. Это также увеличивает протяженность коммуникаций и соединительной арматуры и тем самым увеличивает потери реагента. Кроме того, сложно организовать циркуляцию реагента в сборных нефтепроводах, так как необходимы специальные емкости для его накопления.

Предлагаемый способ позволяет удалять парафиноотложения в трубопроводе при подаче суспензии микроорганизмов непосредственно в эту систему.

С помощью предлагаемого способа возможна также обработка призабойной зоны скважины с целью удаления асфальто-смоло-парафиновых отложений (АСПО), поскольку при циркуляции бактериальной суспензии в стволе скважины используемые микроорганизмы в значительных количествах нарабатывают такие продукты жизнедеятельности как поверхностно-активные вещества (ПАВы) и органические растворители, которые в свою очередь способствуют очистке призабойной зоны.

Еще одним отличием предлагаемого способа от прототипа является совместное использование микроорганизмов и НПАВов типа оксиэтилированных изононилфенолов в количестве до 2 мас.

Для увеличения эффекта депарафинизации можно дополнительно использовать ПАВы совместно с микроорганизмами. При этом происходит усиление эффекта: ПАВы отмывают трубы от парафиноотложения и способствует эмульгированию твердых парафинов, увеличивая таким образом площадь контакта микроорганизмов с парафинами. При этом возрастает скорость очистки загрязненной поверхности от парафина. Кроме того, в заявляемом техническом решении предлагается использовать неионогенные ПАВы, которые являются гораздо менее токсичными для микроорганизмов, чем анионактивные ПАВы, что позволяет применять более концентрированные их растворы.

Все вышесказанное позволяет сделать вывод о соответствии заявляемого способа критерию изобретения "изобретательский уровень".

Эффективность заявляемого способа по сравнению с известным испытывали в лабораторных условиях с использованием следующих материалов и реагентов:
1. Оксиэтилированные изононилфенолы со степенью оксиэтилирования (n) 4-12 (АФ9-4-12).

2. Сточная вода девонского горизонта Ромашкинского месторождения с общей минерализацией 100 г/л, разбавлением технической водой, достигала и более низкой минерализации.

3. Парафиноотложения, взятые с поверхности насосно-компрессорной трубы (НКТ) с глубины 400 м.

4. Суспензия углеводородокисляющих микроорганизмов с численностью 1011 кл/мл.

5. Диаммонийфосфат (ДАФ) в качестве источника азота и фосфора для развития микроорганизмов.

В результате лабораторного изучения оксиэтилированных изононилфенолов было найдено, что способность к отмыванию углеводородных загрязнений выше при использовании изононилфенолов со средней степенью оксиэтилирования (n= 5,5-7,5) в зависимости от температуры и содержания солей в воде.

Составление композиций из масло- и водорастворимых изононилфенолов, взятых в соотношении 2:1-5:1, позволяет получать необходимую для данных конкретных условий степень оксиэтилирования.

При этом чем выше минерализация воды и температура, тем больше в композиции должна быть доля водорастворимого изононилфенола и наоборот.

Найдено также, что для наиболее эффективной очистки от углеводородных загрязнений оптимальным являются содержание смеси масло- и водорастворимых ПАВ в воде на уровне 2-5%
При использовании оксиэтилированных изононилфенолов совместно с микроорганизмами существует предельная концентрация НПАВ, выше которой микроорганизмы не развиваются. Для выявления этой концентрации были проведены следующие испытания.

Готовили суспензию углеводородокисляющих микроорганизмов (численность 106 кл/мл) в 2% растворе ДАФ. Суспензию разливали по 100 мл в качалочные колбы, добавляли в каждую по 20 г твердых парафинов и оксиэтилированные изононилфенолы в конечной концентрации 2-5 мас. Ставили на качалку (120 об/мин) и через определенные промежутки времени отбирали пробы жидкости для определения численности микроорганизмов. Эксперимент проводили при комнатной температуре.

Данные по изменению численности микроорганизмов (кл/мл) в ходе эксперимента представлены в табл.1.

Результаты эксперимента указывают, что увеличение концентрации НПАВ выше 2% угнетает жизнедеятельность микроорганизмов. Отсюда следует, что максимальная концентрация оксиэтилированного изононилфенола не должна превышать 2 мас.

На втором этапе в лабораторных условиях изучали эффективность совместного влияния микроорганизмов и оксиэтилированных изононилфенолов на скорость очистки поверхности от отложений парафинов по сравнению с вариантом без оксиэтилированных изононилфенолов. Для этого на стальную пластинку наносили определенное количество твердого парафина (одинаковое для всех вариантов эксперимента), погружали ее в стакан с суспензией углеводородокисляющих микроорганизмов (численность 106 кл/мл) в 2% растворе ДАФ и 2% АФ9-n. В ходе эксперимента определяли время очистки поверхности пластинки от отложений парафина. Полученные результаты сведены в табл.2.

Как видно из табл.2, добавка к микроорганизмам оксиэтилированных изононилфенолов в количестве 2% в 1,4-2 раза сокращает время очистки поверхности от парафиноотложений по сравнению с известным способом.

Осуществление предлагаемого способа поясняется на схеме обвязки устьевого оборудования добывающей скважины, представленной на чертеже.

Способ осуществления следующим образом.

Снимают динамограмму работы добывающей скважины и, анализируя ее, делают вывод о ее техническом состоянии. Если динамограмма показывает наличие парафиноотложений в скважине, то приступают к осуществлению способа.

В емкости (не показана) готовят питательный раствор минеральных солей в пресной воде. например, ДАФ в концентрации до 20 г/л. В этот раствор вводят культуру углеводородокисляющих бактерий в таком количестве, чтобы их численность в растворе была не менее 106 кл/мл и композицию оксиэтилированных алкилфенолов в концентрации 2 мас.

Открывают затрубную задвижку 1 при работающей скважине на 30-45 мин, для снижения уровня жидкости в затрубном пространстве 2 и подсоса в него воздуха. Выводы 3 и 4 из трубы 5 в это время открыты в трубопровод 6, а задвижка 7 закрыта. (Если уровень жидкости в затрубном пространстве 2 резко снижается, то затрубную задвижку 1 закрывают).

После подсоса воздуха подсоединяют выход из затрубного пространства 2 через задвижку 1 к насосному агрегату (не показан) и вводят приготовленную суспензию микроорганизмов и питательных солей через задвижку 1 в затрубное пространство скважины 2 при открытых выкидных задвижках 3 и 4. После ввода всего объема суспензии отсоединяют насосный агрегат и, оставляя задвижку 1 открытой, закрывают задвижку 4 и отсоединяют выкидную линию 8 скважинного насоса 9 с затрубным пространством скважины 2 и при этом открывают задвижку 7. Затем подключают скважинный насос 9 в работу, осуществляя таким образом циркуляцию раствора в скважине.

Продолжительность циркуляции суспензии в скважине составляет 5-7 дн. Контролируют процесс по изменению динамограммы работы насоса. По окончании процесса обвязку оборудования восстанавливают
(закрывают задвижки 1 и 7 и открывают задвижку 4 и пускают скважину в работу в прежнем режиме.

Отработанный раствор выводят из скважины в трубопровод 6.

В случае, когда парафиноотложения обнаружены также и в трубопроводе 6, что определяется по перепаду давления, после окончания обработки скважинного оборудования выкид из трубы 5 вновь соединяют с трубопроводом 6 и суспензия микроорганизмов с продуктами жизнедеятельности поступает из скважины в трубопровод 6 через открытые задвижки 3 и 4, после чего скважина работает в прежнем режиме. В ходе обработки ведется контроль давления, так как в результате обработки происходит очистка парафина со стенок труб и, как следствие, наблюдается снижение величины перепада давления. Аналогичные циклы закачки рабочего агента в трубопровод через скважину повторяют с периодом 5-10 дн до стабилизации перепада давления, т.е. до неснижаемого уровня.

В случае обработки призабойной зоны эксплуатационной скважины суспензию микроорганизмов после циркуляции продавливают в пласт, после чего скважину останавливают на 2-3 сут. В результате воздействия непосредственно микроорганизмов и продуктов их жизнедеятельности происходит очистка призабойной зоны. После окончания периода обработки скважина запускается в работу в обычном режиме.

Технико-экономические преимущества способа.

1. Использование аэробных микроорганизмов исключает возможность их неконтролируемого развития в закрытой, бескислородной системе нефтепромыслового оборудования, а также упрощает процесс транспортировки, хранения и приготовления рабочего раствора с культурами микроорганизмов.

2. Внутренняя циркуляция с предварительным подсосом воздуха способствует повышению эффективности удаления парафиноотложений без дополнительных затрат.

3. Способ позволяет также эффективно удалять парафиноотложения в трубопроводах.

4. Наряду с очисткой внутренней поверхности труб способ позволяет производить и эффективную обработку призабойной зоны добывающей скважины.

Используемая литература.

1. Мустаев Л.А. Особенности разработки месторождений Башкирии с применением способов теплового воздействия и требования к оборудованию. РИТС, ВНИИОЭНГ, сер. НД, 1977, N 1.

2. Авторское свидетельство СССР N 1562433, кл. E 21 B 37/06.

3. Реф. журнал. Горное дело, 1990, 5Г 389.

4. Paracleen Canada LTD. 761-15 Street, S.W.Medicinemat, Alberta, Canada T1A 4W5.

Похожие патенты RU2100575C1

название год авторы номер документа
СПОСОБ ЛИКВИДАЦИИ АСФАЛЬТО-СМОЛИСТО-ПАРАФИНОВЫХ ОТЛОЖЕНИЙ В ВЫСОКОТЕМПЕРАТУРНЫХ СКВАЖИНАХ 1996
  • Ибатуллин Равиль Рустамович
  • Глумов Иван Фоканович
  • Борзенков Игорь Анатольевич
  • Беляев Сергей Семенович
  • Чепик Сергей Константинович
  • Уваров Сергей Геннадьевич
  • Черников Владимир Степанович
  • Лысенков Евгений Алексеевич
  • Климовец Владимир Николаевич
RU2114281C1
Микробиологический способ удаления асфальтосмолопарафиновых отложений в добывающих скважинах 2023
  • Савченко Андрей Владимирович
  • Сухинин Сергей Викторович
  • Квашнин Александр Георгиевич
RU2818842C1
СОСТАВ ДЛЯ ОБРАБОТКИ СКВАЖИНЫ И ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА (ВАРИАНТЫ) И СПОСОБ ОБРАБОТКИ СКВАЖИНЫ И ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2001
  • Файзуллин И.Н.
  • Гарейшина А.З.
  • Шестернина Н.В.
  • Ахметшина С.М.
  • Хазанов И.В.
RU2221139C2
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЫ 2000
  • Ихсанов В.Б.
  • Ихсанова Н.А.
RU2156353C1
СПОСОБ ОБРАБОТКИ НЕФТЯНОГО ПЛАСТА С ПОМОЩЬЮ МИКРООРГАНИЗМОВ 1997
  • Ибатуллин Равиль Рустамович
  • Глумов Иван Фоканович
  • Чепик Сергей Константинович
  • Уваров Сергей Геннадьевич
  • Беляев Сергей Семенович
  • Борзенков Игорь Анатольевич
  • Фассахов Роберт Харрасович
  • Ибатуллин Камиль Рустамович
  • Сергеев Станислав Сергеевич
RU2121059C1
Способ разработки неоднородного нефтяного пласта 2021
  • Хисаметдинов Марат Ракипович
  • Каримова Гульшат Раяновна
  • Троц Константин Александрович
  • Борзенков Игорь Анатольевич
RU2769612C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО ПЛАСТА 1997
  • Беляев Сергей Семенович
  • Борзенков Игорь Анатольевич
  • Глумов Иван Фоканович
  • Ибатуллин Равиль Рустамович
  • Муслимов Ренат Халиулович
  • Салихов Ильгиз Мисбахович
RU2120545C1
СПОСОБ ОБРАБОТКИ НЕФТЯНОГО ПЛАСТА 1990
  • Беляев С.С.
  • Борзенков И.А.
  • Глумов И.Ф.
  • Ибатуллин Р.Р.
  • Иванов М.В.
  • Кочетков В.Д.
  • Мац А.А.
  • Муслимов Р.Х.
  • Рощектаева Н.А.
SU1774691A1
СПОСОБ СТИМУЛЯЦИИ НЕФТЯНОГО ПЛАСТА С ПОМОЩЬЮ МИКРООРГАНИЗМОВ И ФИЗИКО- МЕХАНИЧЕСКИХ МЕТОДОВ ВОЗДЕЙСТВИЯ 1998
  • Уваров С.Г.
RU2129658C1
СПОСОБ СТИМУЛЯЦИИ НЕФТЯНОГО ПЛАСТА С ПОМОЩЬЮ МИКРООРГАНИЗМОВ И ФИЗИКО-ХИМИЧЕСКИХ МЕТОДОВ ВОЗДЕЙСТВИЯ 2000
  • Ихсанов В.Б.
RU2153533C1

Иллюстрации к изобретению RU 2 100 575 C1

Реферат патента 1997 года СПОСОБ БОРЬБЫ С ОТЛОЖЕНИЯМИ ПАРАФИНА С ПОМОЩЬЮ МИКРООРГАНИЗМОВ

Использование: изобретение относится к области нефтедобывающей промышленности, в частности, к способам борьбы с отложениями парафина в нефтепромысловом оборудовании и призабойной зоне добывающей скважины. Сущность изобретения: в затрубное пространство добывающей скважины вводят суспензию аэробных углеводородокислящих микроорганизмов в водном растворе питательных веществ. Осуществляют деструкцию твердых парафинов. Для этого осуществляют циркуляцию суспензии в скважине путем соединения выкидной линии скважинного насоса с затрубным пространством скважины и включения скважинного насоса. Перед введением в затрубное пространство суспензии осуществляют подсос воздуха в затрубное пространство путем снижения уровня жидкости в нем со статического до динамического. При загрязнении призабойной зоны скважины суспензию продавливают в пласт. В суспензию могут быть введены неионогенные ПАВ типа оксиэтилированных изононилфенолов в количестве до 2 мас.%, 3 з.п. ф-лы, 1 ил., 2 табл.

Формула изобретения RU 2 100 575 C1

1. Способ борьбы с отложениями парафина с помощью микроорганизмов, отличающийся тем, что в качестве микроорганизмов используют аэробные углеводородокислящие микроорганизмы, суспензию которых в водном растворе питательных веществ вводят в затрубное пространство добывающей скважины после подсоса воздуха в него путем снижения уровня жидкости в затрубном пространстве со статического до динамического, после чего осуществляют циркуляцию этой суспензии в скважине путем соединения выкидной линии скважинного насоса с затрубным пространством скважины и включения скважинного насоса. 2. Способ по п.1, отличающийся тем, что при отложении парафина в трубопроводе, суспензию микроорганизмов в растворе питательных веществ из скважины после его циркуляции подают в трубопровод до снижения и стабилизации перепада давления в нем. 3. Способ по п.1, отличающийся тем, что при загрязнении призабойной зоны скважины суспензию микроорганизмов в растворе питательных веществ из скважины после его циркуляции продавливают в нефтеносный пласт. 4. Способ по пп.1 3, отличающийся тем, что в суспензию микроорганизмов вводят неионогенные поверхностно-активные вещества типа оксиэтилированных изононилфенолов в количестве до 2 мас.

Документы, цитированные в отчете о поиске Патент 1997 года RU2100575C1

Мустаев Л.А
Особенности разработки месторождений Башкирии с применением способов теплового воздействия и требования к оборудованию
РИТС, ВНИИОЭНГ, серия НД, N 1, 1977
SU, авторское свидетельство, 1562433, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 100 575 C1

Авторы

Беляев С.С.

Борзенков И.А.

Глумов И.Ф.

Ибатуллин Р.Р.

Рощектаева Н.А.

Слесарева В.В.

Даты

1997-12-27Публикация

1994-03-14Подача