Изобретение относится к лесному хозяйству, в частности к оперативной оценке гидрологического режима лесов на обширных площадях.
Влажность почв является одним из важнейших факторов продуктивности леса. Классификация и картирование лесных угодий по гидрологическим типам относится к числу первоочередных задач мониторинга лесов. Система мониторинга гидрологического режима лесов включает решение таких задач как:
- измерение характеристик естественного увлажнения почвенных грунтов;
- оперативное слежение за динамикой влагозапаса;
- прогнозирование гидрологических процессов на отдаленную перспективу (см. , например, Исаев А. С. и др. Аэрокосмический мониторинг лесов. -М.: Наука, 1991, с. 76 - 77).
Влажность почвенных грунтов регистрируется многими видами электрических измерений, каждый из которых имеет свои преимущества и ограничения. Наиболее распространенным электрическим методом измерений влажности сред является диэлькометрический способ [1]. Известный способ измерений основан на зависимости поглощения электромагнитной энергии и комплексной диэлектрической проницаемости сред в диапазоне СВЧ от влажности.
Способ-аналог реализуется следующей последовательностью операций:
- помещают образец известной толщины (d) между рупорами передающей антенны, возбуждаемой генератором СВЧ, и приемной антенной с детектором;
- регистрируют ослабление мощности электромагнитных волн, прошедших через толщу образца (d) и вычисляют постоянную распространения;
- из постоянной распространения вычисляют диэлектрическую проницаемость ε или tgδ;
- по измеренным ε, tgδ и тарировочным характеристикам определяют влажность образца (см., например, 1 - "Измерение влажности различных сред" в книге Викторов В.А. и др. Высокочастотный метод измерения неэлектрических величин. -М. : Наука, 1978, с. 260, рис. 87, а также 2 - Берлинер М.А. Электрические измерения, автоматический контроль и регулирование влажности. -М.: Энергия, 1965, с. 156 - 157 - аналог).
Недостатками аналогов является неоперативность измерений, необходимость одновременного взятия образцов во многих точках, разнесенных по пространству. Точечные методы трудоемки, дороги и не обеспечивают достаточно надежную пространственную информацию.
Известны методы прямого дистанционного диагностирования почвенной влаги, которые используются главным образом в сельском хозяйстве на открытых участках.
Ближайшим аналогом из известных является дистанционный способ прямого измерения влагозапаса почв [2] . Ближайший аналог реализуется следующей последовательностью операций:
- выбирают несущую частоту радиолокационного канала из условия заданной глубины проникновения (h) электромагнитного поля в грунт;
- сканируют контролируемую поверхность радиолокационными импульсами с борта носителя;
- калибруют радиолокационный канал по измерениям коэффициента отражения от водной поверхности;
- измеряют параметры отраженного сигнала от сканируемой поверхности: среднюю амплитуду и флуктуационный коэффициент модуляции;
- по коэффициенту отражения из формулы Френеля вычисляют диэлектрическую проницаемость зондируемого участка почвы;
- определяют средний влагозапас в слое (h) по корреляционным зависимостям влажности (W) от диэлектрической проницаемости (ε), полученных по тестовым участкам.
Недостатками ближайшего аналога являются:
- недостаточная достоверность и устойчивость измерений к вариациям характеристик приповерхностного слоя;
- малопригодность способа для лесопокрытых территорий;
- большие энергозатраты при активном зондировании из космоса.
Задача, решаемая заявляемым способом, заключается в обеспечении возможности оперативного дистанционного ослеживания динамики и создании устойчивого алгоритма оценки уровня гравитационно-капиллярной влаги почвенных грунтов на основе измерений их радиояркостной температуры.
Поставленная задача достигается тем, что в способе контроля водного режима лесов, включающем получение регистрограммы радиояркостной температуры почвогрунтов, калибровку тракта зондирования по измерениям эталонных участков, осуществляют синхронную регистрацию радиояркостной температуры почвогрунтов на двух частотах f1 << f2, разбивают весь интервал измерений на мозаику участков, преобразуют функции пространственной зависимости радиояркостной температуры Tя(f1, x), Tя(f2,x) каждого участка квантованием в матрицы цифровых отсчетов , получают поэлементным вычитанием разностную матрицу, вычисляют параметры электрического сигнала разностной матрицы, среднеквадратическое отклонение σ, автокорреляционную функцию B(R), оценивают уровень гравитационной влаги почвогрунтов участка по регрессионной зависимости
где h0(f1) - предельная глубина проникновения электромагнитного поля в почвогрунт на частоте f1;
σ - среднеквадратическое отклонение сигнала разностной матрицы анализируемого участка;
R - ширина автокорреляционной функции сигнала разностной матрицы анализируемого участка на уровне 0,1 B(R)max;
z0 - постоянная экспоненты, определяемая зондированием эталонных участков,
синтезируют из последовательно проанализированных участков мозаичную картину влажности почвогрунтов по всей площади наблюдения.
Совокупность существенных признаков позволяет реализовать такие новые свойства заявляемого технического решения как:
- достоверность измерений за счет использования всей энергии сигнала в виде его автокорреляционной функции и нового селективного параметра - скорости флуктуаций радиояркостной температуры по пространственным координатам;
- устойчивость интегрального показателя в широком интервале измерений за счет двухчастотного зондирования и исключения искажений, вносимых неопределенностью характеристик приповерхностных слоев;
- высокая эффективность, достигаемая выбором соотношения зондирующих частот.
Анализ известных технических решений (аналогов) в исследуемой и смежных областях позволяют сделать вывод об отсутствии в них признаков, совпадающих с существенными признаками предлагаемого решения, и о соответствии последнего критерию "изобретательский уровень".
Техническая сущность изобретения заключается в следующем. На настоящий момент основными селектируемыми параметрами регистрограмм радиояркостных температур почвогрунтов являются статистические характеристики: математическое ожидание, дисперсия. Однако ни математическое ожидание, ни дисперсия не несут информации о скорости флуктуации измеряемого процесса. Очевидно, что чем выше уровень грунтовых вод, тем выше капиллярная кайма и тем больше влажность приповерхностных слоев. Из наблюдаемых регистрограмм следует, что большей влажности соответствует их большая изрезанность и большая скорость флуктуаций. Поэтому наиболее информативной характеристикой влажности почвогрунтов является скорость флуктуаций наблюдаемого процесса или так называемая острота "шершавостей" регистрограмм радиояркостных температур. Количественной мерой скорости флуктуаций случайных процессов являются их автокорреляционные функции. По определению (см., например, Заездный А.М. Основы расчетов по статистической радиотехнике. -М. : Связь, 1969, с. 94, формула 7.35) автокорреляционная функция B(R) процесса вычисляется как обратное Фурье-преобразование от его энергетического спектра S(F)
В связи с разработкой и практическим применением алгоритмов быстрого Фурье преобразования (БПФ) вся процедура вычисления автокорреляционных функций регистрограмм может быть автоматизирована. О реализуемости программных методов расчета автокорреляционных функций см., например, Марпл С.А. Цифровой спектральный анализ и его приложения. Перевод с английского, -М.: Мир, 1990, с. 77 - 79. Для этого аналоговые функции регистрограмм T
Вычисляют Фурье-спектр разностной матрицы программным расчетом БПФ в соответствии с зависимостью
.
Энергетический спектр сигнала S(F) связан с его амплитудным спектром G(f) соотношением (см., например, Заездный А.М. Основы расчетов по статистической радиотехнике. -М.: Связь, 1969, с. 93, формула 7.30)
.
Для обеспечения воспроизводимости заявляемого способа необходимо определить вид регрессионной зависимости между характеристикой влажности (высотой капиллярной каймы) и вновь введенным параметром измеряемого электрического сигнала скоростью флуктуаций. Эта задача решается на основе известных аналитических соотношений, программных расчетов и экспериментальных измерений.
В силу принципа взаимности между глубиной проникновения электромагнитного поля в почвогрунт при радиолокационном зондировании и собственным СВЧ-радиоизлучением (см., например, Дулевич В.Е. и др. Теоретические основы радиолокации. -М. : Сов. радио, 1964, с. 677 - 680) радиояркостная температура (Tя) связана с термодинамической температурой T0 K зависимостью
где Kλ - комплексный коэффициент отражения электромагнитных волн от почвогрунта.
В свою очередь, комплексный коэффициент отражения Kλ электромагнитных волн определяется соотношениями Френеля
или для углов скольжения γ → π/2 (что справедливо для надирных измерений
где εк - комплексная диэлектрическая проницаемость зондируемой среды.
В качестве модели диэлектрической проницаемости увлажненных почв используется рефракционная формула вида (см. , Реутов Е. А. , Шутко А.М. "Теоретические исследования СВЧ-излучения однородных увлажненных засоленных почв", Исследование Земли из космоса, N 3, 1990, с. 77)
где εп, εв, εт - комплексные диэлектрические проницаемости почвы, воды и твердых частиц почвы;
ρп, ρт - плотность почвы и твердых частиц;
W - объемное влагосодержание почвы.
Высота капиллярной каймы (h) над уровнем грунтовых вод рассчитывается из соотношения
где σ1,2 - поверхностное натяжение на границах фаз почва - вода;
ρ1, ρ2 - плотности первой и второй фаз;
g - ускорение силы тяжести;
r - средний радиус капилляра.
На фиг. 1 представлены зависимости хода сезонных режимов уровней гравитационной почвенной влаги (капиллярной каймы) для различных категорий лесов (см. , например, Исаев А.С. и др. Аэрокосмический мониторинг лесов. -М.: Наука, 1991, с. 82); на фиг. 2 воспроизведены экспериментальные регистрограммы радиояркостной температуры лесов различных типов для λ1 = 30 см, λ2 = 2,25 см, где I - мелколесье, зарастающее березой, елью, сосной, II - березняк, III - сосняк-березняк чернично-долгомошниковый, IV - сосняк-черничниковый.
Регистрограммы характеризуются тремя параметрами: средним значением, среднеквадратическим отклонением, скоростью флуктуаций. Скорость флуктуаций оценивается производной радиояркостной температуры по координате (dTя/dx). Чем выше гравитационно-капиллярная кайма влаги, тем больше флуктуации радиояркостной температуры. Дифференциальное уравнение, связывающее скорость флуктуаций с глубиной (h) капиллярной каймы, имеет вид
.
Известно (см. , например, Пискунов Н.С. Дифференциальное и интегральное исчисления. Том I, -М.: Наука, 1964, с. 457), что общим решением линейного дифференциального уравнения первого порядка является экспоненциальная зависимость
h, см = h0(f1)[1 - exp(-z/z0)],
где h0(f1) - предельная глубина проникновения электромагнитного поля в почвогрунт на частоте f1;
z - параметр, характеризующий скорость флуктуаций;
z0 - постоянная экспоненты, определяется из начальных условий.
В качестве параметра, характеризующего скорость флуктуаций выбрано соотношение ширины автокорреляционной функции B(R) на уровне 0,1 от "max" к среднеквадратическому отклонению σ, т.е. ; начальные условия (z0) для решения дифференциального уравнения определяются по измерениям эталонных участков.
По степени влияния на излучательные характеристики в диапазоне СВЧ все неоднородно увлажненные почвы делятся на два основных типа. Первый тип характеризуется монотонным изменением влажности по глубине. Спектральные различия радиояркостных температур для этого типа почв невелики. Второй тип отличается наличием на поверхности почвы переходного слоя - корки. Он образуется после подсыхания почвогрунта, на нижней границе слоя происходит разрыв капиллярных связей. Чем больше длина волны зондирования, тем больше глубина проникновения электромагнитного поля в почвогрунт. В соответствии с приближенными граничными условиями Леонтовича для проводящей среды (увлажненные почвогрунты) постоянные распространения
Глубиной проникновения (h) считается расстояние по нормали к поверхности, где амплитуда тока убывает в e раз, или тогда
Удельное сопротивление почвогрунтов (торф, глина, суглинок, песок) в зависимости от влажности имеют порядок (0,2...3)•103 ом•м. Для того чтобы обеспечить регистрацию уровня капиллярной каймы почвогрунтов основных типов лесов до глубины 120 - 140 см (сухой песок) длина волны зондирования должна составлять порядка 30 см. Экранирующее влияние поверхностного слоя (0,5 - 3 см) наблюдается до длины волны < 2,25 см. Следовательно, наиболее эффективные измерения соответствуют длинам волн 2,25 и 30 см.
Пример. Предлагаемый способ может быть реализован на базе устройства по схеме фиг. 3. На научно-исследовательском модуле "Природа" [1], состыкованного с орбитальной станцией "Мир", установлен радиометрический комплекс "Икар-П" 2, содержащий 15 СВЧ-радиометров в диапазоне от 0,3 до 30 см. Включение радиометров в режим измерений над заданными районами наблюдений 3 осуществляется по циклическим или разовым командам на основе суточной программы работы спецаппаратуры, закладываемой в бортовую систему управления 4 орбитальной станции "Мир" из Центра управления полетом по командной радиолинии. Выходы радиометров комплекса "Икар-П" подключены к аналогово-цифровому преобразованию 5 с шагом квантования сигнала по амплитуде 1/256. Результаты измерений в виде цифрового потока данных вместе со служебной информацией (время, координаты измерений, признак измерителя) записывается в бортовое запоминающее устройство 6. Накопленная в БЗУ 6 информация в сеансах видимости передается радиотелеметрической системой 7 типа "БИТС-2" по радиоканалу 8 на наземные пункты приема 9, где записывается на магнитную ленту. Зарегистрированная в сеансах связи информация по высокочастотному кабелю передается в Центр обработки 10. В центре обработки 10 осуществляется первичная обработка информации, заключающаяся в выделении из общего потока файлов измерительной информации радиометров на основе служебных признаков. Скомпанованные файлы измерительной информации переписываются на стриммер типа "FT-120" для ввода в ПЭВМ 11 типа IBM PC/486/487. Вторичная обработка радиометрической информации для получения результатов измерений влажности почвогрунтов осуществляется на ПЭВМ 11, в составе постоянного ЗУ 12, дисплея 13 типа VGA и принтера 14. Обработка информации осуществляется блоками, соответствующими измерениям единичного участка. Единичный участок представляет собой полосу подстилающей поверхности, ширина которого равна элементу разрешения антенны радиометра, а длина количеству обрабатываемых пикселов, домноженных на элемент разрешения.
В примере реализации измерительная матрица представляется строкой из 512 элементов, с уровнем квантования по амплитуде 1/256. После поэлементного вычитания измерительных матриц получают разностную матрицу и вычисляют параметры электрического сигнала разностной матрицы: математическое ожидание, дисперсию автокорреляционную функцию. О реализуемости программных методов расчета параметров электрического сигнала матрицы по операциям заявляемого способа см., например, "Методы и аппаратура цифровой обработки изображений", версии 2.1 и 2.2 "Маски интегрирования Фурье-спектра", технический отчет, МГУ, 1986, с. 61 - 64.
До установки на модуль "Природа", радиометрический комплекс "Икар-П" проходил летные испытания в ИРЭ АН. Натурные реализации измерений радиояркостной температуры лесов с различным типом почвогрунтов представлены регистрограммами фиг. 2. Обработка регистрограмм по изложенной выше процедуре получения разностной матрицы с последующим программным расчетом параметров электрического сигнала разностной матрицы представлены в таблице.
Вид автокорреляционных функций единичных участков, соответствующих определенным типам леса: B1(R) - березняк, B2(R) мелколесье, B3(R) сосняк-черничниковый, полученных программным расчетом, приведен на графиках фиг. 4. Полученные расчетные функции совпадают с теоретическим видом функций автокорреляции для Гауссова случайного процесса (см., например, Заездный А.М. Основы расчетов по статистической радиотехнике. -М.: Связь, 1964, с. 184). Контрольные замеры уровня капиллярной каймы на измеряемых эталонных участках (тип леса мелколесье соответствовали h = 50 см, что позволяет рассчитать показатель экспоненты (z0). При перечисленных исходных данных аналитическое выражение функции регрессии глубины капиллярной каймы почвогрунтов от скорости флуктуаций радиояркостной температуры над контролируемым участком имеет вид
График функции регрессии представлен на фиг. 5. График характеризует высокую чувствительность результата оценок к вновь введенному параметру. Эффективность способа определяется возможностями оперативного контроля гидрологического режима на обширных площадях, устойчивостью результатов измерений вследствие интегральности выбранных критериев оценки.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОНТРОЛЯ ПИРОЛОГИЧЕСКОГО СОСТОЯНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ | 2015 |
|
RU2581783C1 |
СПОСОБ ОТСЛЕЖИВАНИЯ ГРАНИЦЫ ЗОНЫ "ЛЕС-ТУНДРА" | 2013 |
|
RU2531765C1 |
СПОСОБ ОБНАРУЖЕНИЯ АНОМАЛИЙ МОРСКОЙ ПОВЕРХНОСТИ | 1997 |
|
RU2109304C1 |
СПОСОБ ЭКОЛОГИЧЕСКОГО ЗОНИРОВАНИЯ ТЕРРИТОРИИ | 1998 |
|
RU2132606C1 |
СПОСОБ ОЦЕНКИ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ | 1997 |
|
RU2117286C1 |
СПОСОБ ОЦЕНКИ БИОМАССЫ РАСТИТЕЛЬНОСТИ | 1999 |
|
RU2155472C1 |
СПОСОБ ИДЕНТИФИКАЦИИ ТИПОВ РАСТИТЕЛЬНОСТИ | 1994 |
|
RU2115887C1 |
СПОСОБ ОБНАРУЖЕНИЯ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ | 2001 |
|
RU2217779C2 |
СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ЛЕСОВ | 1992 |
|
RU2038001C1 |
СПОСОБ ОЦЕНКИ НЕФТЕГАЗОВОГО МЕСТОРОЖДЕНИЯ | 1998 |
|
RU2153182C1 |
Использование: лесное хозяйство, в частности при оперативной оценке гидрологического режима лесов на обширных площадях. Сущность изобретения: способ включает операции получения синхронных регистрограмм радиояркостной температуры Tя почвогрунтов участков на двух частотах, преобразования функций пространственной зависимости Tя квантованием в матрицы цифровых отсчетов , вычисления параметров: среднеквадратического отклонения и автокорреляционной функции электрического сигнала разностной матрицы и оценки уровня гравитационно-капиллярной влаги участка по регрессионной зависимости
,
где h0 - предельная глубина проникновения поля в почвогрунт на частоте f1; R - ширина автокорреляционной функции на уровне 0,1 Bmax (R); σ - среднеквадратическое отклонение сигнала разностной матрицы; Z0 - постоянная экспоненты, определяемая зондированием эталонных участков. 5 ил., 1 табл.
Способ контроля водного режима лесов, включающий получение регистрограмм радиояркостной температуры почвогрунтов, калибровку тракта зондирования по измерениям эталонных участков, отличающийся тем, что осуществляют синхронную регистрацию радиояркостной температуры почвогрунтов на двух частотах f1 << f2, разбивают весь интервал измерений на мозаику участков, преобразуют функции пространственной зависимости радиояркостной температуры Тя/х/f1, Тя/х/f2 каждого участка квантованием в матрицы цифровых отсчетов получают поэлементным вычитанием разностную матрицу, вычисляют параметры электрического сигнала разностной матрицы, среднеквадратическое отклонение σ, автокорреляционную функцию В(R), оценивают уровень гравитационной влаги почвогрунтов участка по регрессивной зависимости
синтезируют из последовательно проанализированных участков мозаичную картину влажности почвогрунтов по всей площади наблюдения,
где hо(f1) предельная глубина проникновения электромагнитного поля в почвогрунт по частоте f1;
σ - среднеквадратическое отклонение сигнала разностной матрицы анализируемого участка;
R ширина автокорреляционной функции сигнала разностной матрицы анализируемого участка на уровне 0,1 B(R)max;
Zо постоянная экспоненты, определяемая зондированием эталонных участков.
Викторов В.А | |||
и др | |||
Высокочастотный метод измерения неэлектрических величин | |||
- М.: Наука, 1978, с | |||
Прибор для периодического прерывания электрической цепи в случае ее перегрузки | 1921 |
|
SU260A1 |
Торфодобывающая машина с вращающимся измельчающим орудием | 1922 |
|
SU87A1 |
Афанасьев А.С | |||
и др | |||
Дистанционное зондирование почв в декаметровом диапазоне | |||
- Исследование Земли из космоса, N 1 | |||
- М.: Наука, 1990, с | |||
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя | 1920 |
|
SU57A1 |
Авторы
Даты
1998-02-10—Публикация
1996-04-10—Подача