ПЛЕНОЧНЫЙ ВЕТРОДВИГАТЕЛЬ Российский патент 1998 года по МПК F03D3/00 

Описание патента на изобретение RU2106523C1

Изобретение относится к применению возобновляемых источников энергии, в частности ветра и изменений температуры окружающей среды для извлечения электрической энергии.

Известны различные типы ветродвигателей, где лопатки установлены так, чтобы максимально использовать давление ветра. Это достигается тем, что лопастям придают веретенообразную форму и устанавливают их соответственно на общей оси (см. Казневский В.П. Аэродинамика в природе и технике. М., Просвещение, 1985, с. 32-94).

В последнее время появились ветродвигатели с вертикальной осью и лопастями цепного очертания, где конец одной лопасти соединяется с началом другой, образуя кольцо (см. Дэвис А., Шуберт Р. Альтернативные источники энергии в строительном проектировании. М., СИ, 1983, с. 97-97).

Есть также варианты использования работы лопастей ветродвигателя за счет энергии воздушных потоков над зданиями (см. Энергоактивные здания/Под ред. Э.В.Сарнацкого, Н.П.Селиванова. М., СИ, 1988, с. 69-72).

Однако во всех этих конструкциях используется только давление воздушных потоков для получения электричества.

Прототипом предлагаемого изобретения является ветродвигатель с лопастями, обтянутыми тканью, бумагой или другими материалами (см. Дэвис А., Шуберт Р. Альтернативные источники).

Недостатками такой конструкции являются следующие моменты:
- в отсутствии ветра ветродвигатель не работает, т.е. не производит электроэнергии;
- поверхности лопастей служат только для восприятия ветра и передачи момента на ось генератора.

Изобретение направлено на получение дополнительной электроэнергии за счет использования в качестве источника энергии изменений температуры окружающего воздуха.

Это достигается тем, что в предлагаемом ветродвигателе, с лопастями, обтянутыми мягким эластичным материалом, лопасти выполнены из пьезопленки (например, из поливинилиденфторида), которая стянута по краям термочувствительными элементами из сплава с "обратным эффектом памяти формы" (например, из нитинола) на двух крепежных кольцах.

Эти термочувствительные элементы в зависимости от изменения температуры растягивают пьезопленку, которая при этом вырабатывает электричество. Термочувствительные элементы настроены на температуру от -30 до +30oC с интервалом 0,5-1oC.

На фиг. 1 показан общий вид ветродвигателя; на фиг. 2 - конструкция термочувствительных элементов из сплава с обратным эффектом памяти формы (сокращ. ОЭПФ); на фиг. 3 - их поперечный разрез; на фиг. 4 - вид сверху на ветродвигатель; а на фиг. 5 - схема спиц крепежных колец при взгляде на конструкцию вдоль ее оси.

Номерами на чертеже обозначены: 1 - пьезопленка из поливинилиденфторида с напыленными на поверхности электродами в местах зажимов, 2 - крепежное колесо, 3 - термочувствительные элементы из сплава с ОЭПФ, 4 - центральная ось из диэлектрического материала (ось имеет возможность менять свою длину для обеспечения натяжения пьезопленки).

Поливинилиденфторидная пленка (сокр. ПВДФ) 1 натянута на спицы крепежного колеса 2 с помощью термочувствительных элементов 3 из ОЭПФ.

Крепежные кольца 2 установлены в оси 4 с возможностью совместного вращения и продольного перемещения вдоль оси 4. При этом ось 4 имеет раздвижное устройство (талреп) для натяжения пьезопленки 1. Спицы крепежных колец 2 выполнены изогнутыми, при этом на одном колесе спицы изогнуты в одном направлении, а на противоположном колесе - в противоположном (при установке на горизонтальную ось). Если же ось ветродвигателя расположена вертикально, то спицы крепежных колес 2 изогнуты в одну сторону.

Пленочный ветродвигатель работает следующим образом:
- при наличии ветра работает как обычный ветродвигатель - за счет кручения передает энергию генератора, который перерабатывает ее в электрический ток,
- при наличии изменения температуры окружающей среды начинают срабатывать термочувствительные элементы из ЭОПФ 3, попеременно натягивая пьезопленку 1, заставляя ее давать электрический ток. Этот ток снимается с помощью металлических электродов, напыленных на разные стороны пленки в местах зажимов (см. фиг. 3 разрез 1-1). Надо добавить, что от обычного ветра пьезопленка также будет вибрировать и, то натягиваясь, то удлиняясь, также вырабатывать ток.

По предварительным расчетам автора, пленочный ветродвигатель диаметром 50 см и длиной 1 м, в отсутствие ветра, но при изменении температуры может дать электрический ток напряжением до 100 В, мощностью до 150 Вт. К этому надо добавить ту мощность, которая будет сниматься при наличии ветра (аналогичная конструкция обычного ветродвигателя при скорости ветра порядка 30 км/ч дает энергию мощностью около 700 Вт. Газета "Есть идея" N 4 (23) 1994 г., с. 3). Сюда же надо добавить ту часть энергии (электрический ток), получаемой от пьезопленки от ветровой вибрации. Кроме того, есть сведения, что пьезопленка из ПВДФ выделяет электричество от действия прямых солнечных лучей, что составит еще несколько процентов дополнительной электрической энергии.

Технико-экономические преимущества предлагаемой конструкции состоят в возможности извлечения дополнительной электроэнергии и в возможности получения энергии в отсутствие ветра. Другим преимуществом является возможнось объединения нескольких ветродвигателей в одну батарею с целью увеличения отдачи мощности. Преимуществом является также то, что посадка такого ветродвигателя возможна как на вертикальную, так и на горизонтальную ось. Для этого необходимо перевернуть крепежные колеса, чтобы спицы были изогнуты в одну сторону (при установке на вертикальную ось) или в противоположные стороны (при установке ветродвигателя на горизонтальную ось).

Похожие патенты RU2106523C1

название год авторы номер документа
ИСТОЧНИК ЭЛЕКТРИЧЕСКОГО ТОКА 1993
  • Мифтахутдинов И.Х.
RU2087066C1
Энергоэффективная солнечно-ветровая энергетическая установка 2015
  • Голощапов Владлен Михайлович
  • Баклин Андрей Александрович
  • Бурлов Владимир Васильевич
  • Асанина Дарья Андреевна
  • Фёдорова Алёна Геннадьевна
  • Абрамов Сергей Сергеевич
RU2611923C1
УТЕПЛЕННОЕ СВЕТОПРОЗРАЧНОЕ ПОКРЫТИЕ 1991
  • Мифтахутдинов И.Х.
RU2034971C1
СООРУЖЕНИЕ 1993
  • Мифтахутдинов И.Х.
RU2087656C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ ПЬЕЗОПЛЕНОК СО СЛОЯМИ ЭЛЕКТРОПРОВОДЯЩИХ ПОЛИМЕРОВ 2016
  • Дмитриев Иван Юрьевич
  • Курындин Иван Сергеевич
  • Ельяшевич Галина Казимировна
RU2635804C1
Кнопочный выключатель 1988
  • Тахциди Юрий Николаевич
  • Егоров Лев Яковлевич
SU1599905A1
ВЕТРОРОТОР С КОВШОВЫМИ СТВОРЧАТЫМИ ЛОПАСТЯМИ 2001
  • Морозов Владимир Александрович
  • Лебедев Николай Николаевич
RU2276283C2
ВЕТРОТЕПЛОГЕНЕРАТОР 2002
  • Седых Н.А.
RU2231687C1
РОТОРНЫЙ ВЕТРОАГРЕГАТ С ПОЛНОПОВОРОТНЫМИ ЛОПАСТЯМИ 2007
  • Алексеев Евгений Иванович
  • Бальзанников Михаил Иванович
  • Евдокимов Сергей Владимирович
RU2347103C1
ВЕТРЯНОЙ ДВИГАТЕЛЬ 2021
  • Алдохин Евгений Степанович
RU2788466C1

Иллюстрации к изобретению RU 2 106 523 C1

Реферат патента 1998 года ПЛЕНОЧНЫЙ ВЕТРОДВИГАТЕЛЬ

Использование: относится к применению возобновляющих источников энергии: ветра, изменений температуры наружного воздуха для извлечения электроэнергии. Сущность изобретений: ветродвигатель имеет пленочные лопасти из пьезопленки (например, поливинилиденфторид), стянутые термочувствительными элементами и з сплава с "обратимым эффектом памяти формы" на спицах крепежных колес, насаженных на общую ось и вращающихся от ветра. Кроме того, пьезопленка выделяет электричество от колебаний температуры наружного воздуха, от действия прямых солнечных лучей, а также от вибрации под действием ветра пленка, то натягиваясь, то удлиняясь, будет вырабатывать дополнительную электроэнергию. 5 ил. .

Формула изобретения RU 2 106 523 C1

Пленочный ветродвигатель, имеющий установленные на оси лопасти, обтянутые мягким эластичным материалом, отличающийся тем, что лопасти выполнены из пьезопленки, которая стянута по краям термочувствительными элементами из сплава с "обратимым эффектом памяти формы" на спицах крепежных колец.

Документы, цитированные в отчете о поиске Патент 1998 года RU2106523C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Казневский В.П., Аэродинамика в природе и технике
М.: Просвещение, 1985, с.92-94
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Девис А., Шуберт Р
Альтернативные источники энергии в строительном проектировании
МСИ, 1983, с.96-97.

RU 2 106 523 C1

Авторы

Мифтахутдинов И.Х.

Даты

1998-03-10Публикация

1994-10-12Подача