Изобретение относится к области сейсмологии (морская сейсморазведка, сейсморазведка в переходных зонах земля-вода, наземная и скважинная сейсморазведка), где требуется получение упругих волн в геологических средах в виде многократных пульсаций давления с определенными характеристиками. Изобретение может быть применено также для инженерно-геологических изысканий, в строительстве, гидрологии для имитации землетрясений с исследовательской целью и т.п.
Известно большое количество различных источников сейсмосигналов, работающих на суше и в воде, не использующих энергию взрыва.
На суше работа таких источников заключается в механическом воздействии на породу с помощью различных приспособлений ударного типа, например [1]. В воде сигналы получают источниками пневматического, пневмогидравлического или электродинамического типа.
При этом сигналы создаются за счет волн сжатия или разрежения при возникновении газового пузыря, гидродинамического воздействия или путем преобразования электрического импульса в перемещение мембраны, от которой распространяются волны давления.
Большинство источников имеют ряд существенных недостатков, не позволяющих использовать их для конкретных видов сейсмических работ с учетом всех требований к ним или к месту их использования. Среди недостатков существующих источников - громоздкость, трудность эксплуатации, дороговизна, сложность оборудования, неблагоприятное экологическое влияние на природу и т.п.
Одно из основных требований, предъявляемых к источникам, - получение воспроизводимых свип-сигналов, т.е. сигналов с изменяющейся при работе источника частотой и амплитудой, удобных для расшифровки. Частота сигналов при этом должна изменяться в пределах от нескольких герц до ≈250 герц, амплитуда (при подводных работах) не должна превышать 0,6...1 МПа. Известные способы генерации сигналов не могут одновременно удовлетворить совокупности рассматриваемых требований, т.к. исчерпали свои возможности. В этой связи необходимо искать принципиально новые способы индуцирования сигналов.
В качестве прототипа был выбран способ возбуждения сейсмосигналов, основанный на использовании импульсного двигателя на твердом топливе [2]. Двигатель, напоминающий ракетный, при работе образует продукты сгорания, вылетающие через сопло. За счет появляющейся реактивной тяги начинается движение его с последующим ударом по жидкости. В результате этого возникают сейсмические сигналы.
Описанный способ имеет следующие недостатки. Он ограничен в области применения. Поверхностные (без шпура) и подводные варианты источника на основе этого способа разработать невозможно, они будут неработоспособны. Регулирование амплитудно-частотными характеристиками излучаемых сигналов затруднено из-за движения двигателя, который может двигаться не так, как надо. Одновременно будет недостаточное для сейсморазведки отношение амплитуд полезного сигнала и помех. При ударах может возникнуть только низкочастотная составляющая сигналов. Способ не позволяет достичь достаточной синхронизации источников при работах на сейсмическом профиле. На его основе, в принципе, невозможно получить свип-сигналы.
Предлагается принципиально новый способ возбуждения сейсмических сигналов, который устранит описываемые недостатки прототипа. Суть его заключается в следующем. В небольшом по объему и простом по исполнению устройстве, напоминающем ракетный двигатель на твердом топливе, индуцируется пульсирующее горение, которое представляет собой достаточно интенсивные колебания давления в камере с изменяющейся по времени частотой и амплитудой. Частоты при определенной настройке двигателя (прежде всего за счет топлива) совпадут с частотами, необходимыми для сейсморазведки. Соответственно будет происходить возникновение пульсирующей реактивной тяги (при работе на Земле) или соответствующее пульсирующее излучение (при работе под водой) через отверстие (сопло), одно или несколько, что приведет к генерации упругих волн.
Следует заметить, что первопричина пульсирующего горения рассматриваемого способа не связана с конструктивными доработками, приводящими к перекрыванию сопла, или другими механическими воздействиями на двигатель, а обусловлена процессом неодновременного выгорания основных компонентов топлива в твердой фазе. Этот процесс проявляется в виде колебаний в поступлении массы продуктов горения в газовую фазу, их химического состава, а также тепловой энергии.
Неодновременность выгорания, в какой-то мере напоминающая дискретное горение, инициирует, в свою очередь, появление непрореагировавших, промежуточных компонентов, находящихся в газообразном состоянии. Такие компоненты при определенных условиях, которые можно регулировать, способствуют появлению колебательных процессов, представляющих собой периодические химические реакции. В отличие от обычного механизма химических реакций, характеризующихся образованием новых веществ до исчерпания реагентов или до установления равновесного состояния, колебательный режим связан с периодическим изменением промежуточных продуктов до тех пор, пока, в конечном итоге, не образуются стабильные продукты, препятствующие дальнейшим изменениям.
Колебательные химические реакции возникают, например, при окислении окиси углерода в процессе неполного горения топлива при низких давлениях в камере ракетного двигателя. Они приводят к пульсирующему горению, низкочастотная составляющая которого усиливается, когда время завершения основных химических реакций (обычно несколько миллисекунд), не связанных с колебательными, превышает время вылета продуктов распада (газообразных компонентов) через сопло.
При высоких давлениях и уменьшении неполноты сгорания топлива могут появиться и высокочастотные составляющие рассматриваемого пульсирующего режима.
Новый технический результат, связанный с индуцированием пульсирующего горения, может быть осуществлен, если в ракетном двигателе используют топливо на основе перхлората аммония в качестве окислителя - 80% и 20% тиокола - горючего связующего.
Неодновременное выгорание компонентов в твердой фазе происходит вследствие того, что окислитель начинает разлагаться при 240oC, а тиокол - при 170oC, причем скорость его распада выше.
Разница в скоростях и началах разложения указанных компонентов и является основой для возникновения колебательных химических реакций в газовой фазе с последующим индуцированием пульсирующего горения в камере и генерированием сейсмических сигналов через сопло.
Очевидно, что и другие топлива, имеющие большую разницу в скоростях и началах разложения основных компонентов, вступающих в реакции, также могут быть использованы в качестве рабочих тел в двигателях, генерирующих сейсмические сигналы.
В качестве примера реализации предлагаемого способа получения многократных сейсмических сигналов на фиг. 1 показано устройство - излучатель, разработанное на основе модельного ракетного двигателя.
Устройство состоит из переходника для подключения линии воспламенения 1, воспламенителя 2 (небольшая навеска дымного пороха в корпусе или та же навеска с электрозапалом типа МБ-2Н, уменьшающим время срабатывания воспламенителя от стандартной сейсмической аппаратуры), металлического стакана 3, цилиндрического канального элемента из твердого топлива 4 длиной от 50 до 140 мм, наружным диаметром от 18 до 36 мм и диаметром канала от 6 до 10 мм (в качестве элемента может использоваться и пучок тонкосводных трубок топлива), решетки 5, соплового блока 6 и заглушки 7.
Устройство предназначено для подводных работ. При запуске срабатывает воспламенитель, затем загорается топливо и после срыва заглушки начинается истечение продуктов сгорания через сопло. Чтобы устройство не двигалось при запуске, его закрепляют на опускаемой вместе с ним платформе. Однако оно может быть и без платформы, если вместо одного сопла в центре соплового блока использовать 4 таких сопла с той же суммарной площадью выходного отверстия, но расположенных на периферии соплового блока. В этом случае устройство при работе будет оставаться неподвижным.
При испытаниях устройства в воде на глубинах до 10 м видны световые кратковременные вспышки, соответствующие по частоте пульсирующему режиму работы устройства. После вспышек на поверхность поднимается пузырь с газообразными продуктами горения (образуются CO и CO2) и создается бурление. В отличие от взрывных подводных сейсмических работ, неблагоприятно воздействующих на ихтиофауну, в данном случае имеет место мягкое возбуждение звуковой волны, не оказывающее такого влияния. К тому же продукты горения являются достаточно экологически безопасными.
Объем газов при одном испытании (до 100 г топлива) составляет около 1 м3, высвобождающаяся при горении энергия - 400 кДж.
На фиг. 2 показаны фрагменты звуковых колебаний, записанных гидрофоном (с соответствующей аппаратурой), при пульсирующем режиме работы устройства. Глубина погружения источника - 5 м, расстояние до гидрофона - 10 м. Видно, что генерируемые сигналы сложной формы. Для них характерны два диапазона частот.
В отличие от прототипа в данном случае имеют место многократные сигналы, которые можно регулировать по частоте и амплитуде в широких пределах. Поэтому предлагаемый способ за один цикл работ устройства позволяет получить значительно больше информации для сейсморазведочных работ на нефть и газ, что потребует меньше испытаний и позволит провести улучшенную обработку предварительно записанных сигналов. К тому же устройство, использующее предлагаемый способ, может работать на Земле, в скважинах и в других условиях, где прототип работать не может. Устройство по совокупности своих свойств является более эффективным по сравнению с другими известными источниками сейсмосигналов. Особенно оно эффективно в переходных зонах земля-вода, в труднодоступных районах и других местах, где требуются легкие, простые, мощные излучатели свип-сигналов с регулируемыми характеристиками, безотказно работающие в самых различных условиях.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ВОЗБУЖДЕНИЯ КОЛЕБАНИЙ | 1996 |
|
RU2153686C2 |
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2471974C2 |
СПОСОБ СТАБИЛИЗАЦИИ ГОРЕНИЯ ТВЕРДОГО ТОПЛИВА | 2000 |
|
RU2194689C2 |
УСТРОЙСТВО НА ТВЕРДОМ ТОПЛИВЕ ДЛЯ ОБРАБОТКИ СКВАЖИН И СПОСОБ ЕГО ПРИМЕНЕНИЯ | 2011 |
|
RU2471973C2 |
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ОБРАБОТКИ ПРОДУКТИВНОГО ПЛАСТА | 2003 |
|
RU2233976C1 |
УСТРОЙСТВО ДЛЯ ТЕРМОГАЗОХИМИЧЕСКОЙ ОБРАБОТКИ ПРОДУКТИВНОГО ПЛАСТА | 1994 |
|
RU2071556C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1998 |
|
RU2125173C1 |
СПОСОБ ГАЗОДИНАМИЧЕСКОЙ СТАБИЛИЗАЦИИ ДАВЛЕНИЯ В КАМЕРЕ МОДЕЛЬНОГО ДВИГАТЕЛЯ С ЗАРЯДАМИ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА С ВЫСОКОЙ ЧУВСТВИТЕЛЬНОСТЬЮ СКОРОСТИ ГОРЕНИЯ ОТ ДАВЛЕНИЯ | 2006 |
|
RU2327052C2 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1996 |
|
RU2102623C1 |
СПОСОБ ОБРАБОТКИ ПРОДУКТИВНОГО ПЛАСТА | 1996 |
|
RU2103493C1 |
Использование: в геофизике при проведении вибрационной сейсморазведки, в частности на акваториях. Сущность изобретения: для возбуждения сейсмических сигналов индуцируют в камере ракетного двигателя пульсирующее горение твердого топливного элемента, состоящего из 80% перхлорита аммония - окислителя и 20% тиокола - горючего связующего. 1 з.п. ф-лы, 2 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, авторское свидетельство, 1122990, G 01 V 1/115, 1984 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
SU, автор ское свидетельство, 132499, G 01 V 1/04, 1987. |
Авторы
Даты
1998-06-20—Публикация
1993-08-31—Подача