Изобретение относится к области нелинейной интегральной и волоконной оптики.
Известен способ переключения однонаправленных распределенно-связанных волн (ОРСВ) ортогональных поляризаций, заключающийся в том, что между волнами ортогональных поляризаций за счет выбора ориентации кристалла или волновода создают линейную распределенную связь, подают мощную оптическую волну (накачку) и одновременно малый управляющий оптический сигнал и интенсивность сигнала изменяют. При этом на выходе среды резко меняется соотношение интенсивностей волн различных поляризаций.
Указанный способ выбран в качестве прототипа.
Недостатком прототипа является недостаточно высокий коэффициент усиления и трудность ориентирования объекта (кристалла или оптического волновода).
Технический результат изобретения выражается в повышении коэффициента усиления сигнала и создании благоприятных условий для реализации оптического транзистора, а также приборов на его основе.
Технический результат достигается тем, что за счет выбора ориентации объекта (обладающего двулучепреломлением) и вектора поляризации падающей волны линейная связь волн ортогональных поляризаций полностью устраняется.
Взаимодействие ОРСВ двух ортогональных поляризаций в двулучепреломляющей кубично-нелинейной среде с амплитудами Ax и Ay описывается уравнениями
где K - коэффициент связи;
α = βy-βx - различие между показателями преломления волн с поляризациями вдоль осей x и y;
ζ = zω/c,
z - координата вдоль распространения ОРСВ;
- нелинейные коэффициенты.
Если перейти к интенсивностям и фазам, то уравнения (1) примут вид
где
штрих означает дифференцирование по ζ.
Главная сложность уравнений (1,2) состоит в присутствии члена с Для периодически скрученного волоконного световода (поляризационного фильтра) член с может быть отброшен.
Нами найдено специальное преобразование переменных, которое упростило уравнения и позволило найти их аналитическое решение
где введены нормированные параметры Стокса
ξ=(Iy-Ix)/I,
I=Ix+Iy, In= θI/3,
(z=0),
η0= η (z=0),
u0= ξ
l - длина образца (разумеется, l можно трактовать и как текущую координату z),
Это решение справедливо для любых начальных условий Ix0=Ix(z=0), Iy0= Iy(z=0), ψ0= ψ (z=0) и для любых значений K и α.
Как известно самопереключение ОРСВ имеет место при условии r=1 или r1=0 (средняя точка самопереключения M), т.е. в данном случае при условии
из которого определяем In в средней точке переключения M
InM(1-ξ
Поведение решения (3) определяется двумя ключевыми членами, для которых в области самопереключения справедливы аппроксимации
где U = r
В данном изобретении акцент делается на случае K=0, в котором интенсивности (выражающиеся через ξ описываются членом в (3) пропорциональным sn2 (S, r), который достигает экстремальных значений 0 и 1 соответственно при U2=1 и U=0.
В рассматриваемом случае (K=0) условие самопереключения (4,5) удовлетворяется при
При cos(ψ0) = 0 коэффициент усиления малого изменения интенсивности в средней точке переключения M (r=1) вычисляется по формуле
где
Экстремальные значения Tx и глубина переключения ΔT определяются формулами
При имеем ΔT ≈ 1, т.е. при достаточно больших интенсивностях самопереключение становится почти полным. Формула (8) дает гораздо больший коэффициент усиления, чем аналогичная формула для случая α =0; он становится чрезвычайно большим даже при относительно небольших L. Например, при имеем ∂Ixl/∂Ix0 ≈106Ry≈5•106 и ΔT ≈ 0,85; при L=1,6 π, Ry= 3 получаем ∂Ixl/∂Ix0 ≈12•106Ry≈36•106 и ΔT ≈ 0,75. Эти данные хорошо согласуются с результатами численного решения исходных уравнений (1).
Переключение возможно и при cos(ψ0) ≠ 0.
В области больших интенсивностей сигнала Ixo таких, что I
На чертеже приведена зависимость коэффициента передачи мощности излучения накачки Tx ≡ Ix/(Ixo+Iyo) от нормированной интенсивности сигнала поляризованного ортогонально накачке, при
где - нормированная интенсивность накачки.
Возможность осуществления данного изобретения подтверждается следующими примерами.
Пример 1. Накачку с длиной волны λ ≃ 1 мкм от полупроводникового лазера, поляризованную вдоль вертикальной оси (Y) вводили в волновод, светонесущая жила которого была изготовлена из слоистой структуры типа GaAs-GaxAl1-xAs, с x = 0,23, представлявшей набор квантовых ям; θ ≃ 10-4 СГСЭ. Разность показателей преломления двух ортогонально поляризованных волн составляла Δn = 3•10-4= α. Площадь поперечного сечения примерно 10-7см2. Длина волновода 1 см. Интенсивность накачки устанавливалась большей, чем т.е. вводимая мощность накачки была порядка 1 мВт. При подаче в тот же волновод слабого сигнала (той же длины волны), но полязированного вдоль горизонтальной оси (X) и его изменении на 0,1 мкВт мощность на выходе в каждой поляризации менялась примерно на 1 мВт.
Пример 2. Накачка с длиной волны λ ≃ 0,5 мкм от аргонового лазера, поляризованная вдоль вертикальной оси (Y), вводилась в волоконный световод с двулучепреломлением порядка 10-7; θ ≃ 10-13 СГСЭ. Площадь поперечного сечения примерно 10-7см2. Длина световода составляла 10 м. Интенсивность накачки устанавливалась большей, чем т.е. вводимая мощность порядка 100 Вт. В тот же волновод подавали слабый сигнал, поляризованный вдоль горизонтальной оси (х), и изменяли его примерно на 1 мВт. Мощность на выходе в каждой поляризации менялась примерно на 20 Вт.
Использование: изобретение относится к области нелинейной интегральной и волоконной оптики и может быть использовано для создания оптических транзистора, модулятора и логических элементов. Сущность изобретения: способ основан на явлении самопереключения однонаправленных распределенно-связанных волн в кубично-нелинейной среде и заключается в направлении на объект линейно поляризованной волны накачки и ортогонально ей поляризованной сигнальной волны, при этом вектор поляризации волны накачки или сигнала направляют вдоль оптической оси или под углом к ней много меньше π/2, интенсивность волны накачки Ip выбирают выше некоторого порогового значения, а интенсивность волны сигнала Is изменяют в пределах от нуля до максимального значения Is,max <0,1 • Ip. 3 з.п. ф-лы, 1 ил.
где θ - кубично-нелинейный коэффициент объекта (волновода или кристалла);
α = no-ne - разность эффективных показателей преломления ортогонально поляризованных волн,
и интенсивность волны сигнала изменяют в пределах от нуля до максимального значения Ismax < 0,1 • Iр.
3. Способ по п.2, отличающийся тем, что выбор угла между оптической осью объекта, обладающего двулучепреломлением, и вектором поляризации волны накачки или сигнала осуществляют путем поворота объекта.
Майер А.А | |||
Квантовая электроника | |||
Устройство для видения на расстоянии | 1915 |
|
SU1982A1 |
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Многоклапанный ветряный двигатель с вертикальною осью | 1923 |
|
SU2296A1 |
Авторы
Даты
1998-06-27—Публикация
1994-07-05—Подача