Изобретение относится к ветроэнергетике, а именно к ветророторам, преобразующим энергию ветра во вращение ротора.
Известен ветроагрегат, включающий наклонный к горизонтальной плоскости шнековый ротор, который состоит из ступицы и закрепленных на ней винтовых лопастей и установленный на верхнюю подшипниковую опору, смонтированную на мачте с возможностью поворота вокруг мачты, и на нижнюю опору. Ориентация ветроагрегата на ветер осуществляется автоматически поворотором ротора вокруг мачты.
Недостатками такой конструкции являются следующие: с увеличением скорости ветра увеличиваются изгибающие нагрузки на шнековый ротор, поэтому конструкция ротора должна быть рассчитана на ураганные ветры, что ведет к ее утяжелению. Кроме того, с увеличением скорости ветра растет число оборотов, поэтому при достижении ураганных ветров необходимо выполнять дополнительные мероприятия с целью снижения числа оборотов или использовать избыточную мощность, либо останавливать вращение ротора. Это приводит к усложнению ветроагрегата и его обслуживания. Дополнительные мероприятия приводят также к тому, что при ураганных скоростях энергия ветра не используется.
Технической задачей, решаемой изобретением, является облегчение конструкции шнекового ротора, упрощение ветроагрегата и повышение эффективности использования энергии ветра при его больших скоростях.
Для решения технической задачи в консольном ветроагрегате, содержащем наклонный к горизонтальной плоскости шнековый ротор, который состоит из ступицы и закрепленных на ней винтовых лопастей и установленный на верхнюю подшипниковую опору, смонтированную на мачте с возможностью поворота вокруг ее оси, верхняя подшипниковая опора шарнирно прикреплена к узлу поворота, позволяя ротору изменять угол наклона, и связана с ним демпфирующим устройством шарниров.
На фиг. 1 схематически представлен консольный ветроагрегат с положениями шнекового ротора: I - при штиле и малых скоростях ветра; II - при ураганном ветре.
Консольный ветроагрегат содержит наклонный к горизонтальной поверхности шнековый ротор 1, который состоит из ступицы 2 и закрепленных на ней винтовых лопастей 3. Ротор консольно закреплен в верхней опоре 4, в которой он свободно вращается на подшипниках. Верхняя подшипниковая опора 4 прикреплена к узлу поворота 5 посредством шарнира 6, который позволяет шнековому ротору 1 изменять угол наклона к горизонту α под воздействием ветра V. Дополнительно подшипниковая опора 4 связана демпфирующим устройством 7 с узлом поворота 5 с помощью шарниров 8 и 9. Демпфирующее устройство позволяет шнековому ротору плавно изменять угол наклона α ротора 1 под воздействием ветра и может быть выполнено в виде поршня 10 в цилиндре 11 с жидкостью или газом. При движении поршня 10 по каналу 12 происходит переток среды из одной полости цилиндра в другую. Каналы могут быть выполнены в поршне 10. Демпфирующее устройство уменьшает скорость изменения угла наклона ротора.
Узел поворота 5 смонтирован на мачте 13, которая удерживается в вертикальном положении четырьмя растяжками 14. Вращение от ротора 1 через муфту 15 и редуктор 16 передается электрогенератору 17. При штиле и малой скорости ветра VI шнековый ротор занимает положение I, а при большой скорости VII - положение II.
Консольный ветроагрегат работает следующим образом. При направлении ветра V поток обтекает мачту 13 и воздействует на шнековый ротор 1, установленный наклонно под углом α к горизонтальной плоскости. Давление ветра больше воздействует на участки лопастей, расположенные с одной стороны от оси ротора, и он начинает вращаться в подшипниковой опоре 4. Через муфту 15 и редуктор 16 ветроротор 1 приводит во вращение электрогенератор 17 и последний вырабатывает электроэнергию.
При смене направления ветра на ротор 1 начинает действовать составляющая силы давления, нормальная к плоскости, образованной осью ротора 1 и осью узла поворота 5 (т.е. к плоскости чертежа). Под воздействием силы ротор 1 совместно со всеми элементами конструкции 4, 6 - 12 поворачивается в узле поворота 5 вокруг оси мачты до тех пор, пока это плоскость не будет направлена на ветер.
Аэродинамическая сила, действующая на шнековый ротор, может быть записана в виде
Fα= Cα0,5ρV20,25πD2Lpsinα, (1)
где Cα - аэродинамический коэффициент;
ρ, V - плотность воздуха и скорость ветра;
D, Lp - диаметр и длина ротора.
Направление силы Fα мало отличается от направления ветра, поэтому можно записать
β ≈ Kα, где K ≈ 1 (2)
Аэродинамическая сила относительно оси шарнира 6 создает момент сил
Mα= Fαl1sinβ ≈ 0,125πCαkρv2D2Lpl1sin2α (3)
При малых скоростях ветра Vгэ момент Mα меньше момента сил, создаваемого весом ротора G
MG= Gl1cosα, (4),
т. е. Mα < MG (моментом сил веса других элементов конструкции по сравнению с весом ротора пренебрегают). Поэтому ротор будет находиться в крайнем нижнем положении, а поршень 10 демпфирующего устройства 7 будет в крайнем верхнем положении и противодействует компенсирующим моментом
MR= MG-Mα, (5),
который создает силу реакции на демпфирующем устройстве
R = MR/l2, (6)
При отсутствии ветра момент аэродинамических сил равен нулю ((Mα= 0)) и компенсирующий момент будет равен создаваемому весом ротора моменту (MR=MG), т. е. он будет наибольшим. Поэтому при штиле конструкция ротора будет иметь наибольшие изгибающие моменты. С увеличением скорости ветра аэродинамическая сила Fα растет и согласно (3) увеличивается момент Mα и при некоторой скорости ветра Vo он становится равным моменту силы веса ротора MG, в соответствии с (5) результирующий момент NR = 0 и реакция демпфирующего устройства R = 0. В этом случае на ротор не действуют изгибающие моменты, он находится во взвешенном состоянии, как бы в невесомости: распределенная по длине ротора весовая нагрузка уравновешивается распределенной аэродинамической поддерживающей силой. С дальнейшим увеличением скорости ветра V > Vo момент аэродинамических сил Mα начнет превышать момент сил веса MG и ротор начнет поворачиваться относительно оси шарнира 6, т.е. угол α уменьшится. Уменьшится также угол β. Поэтому произойдет изменение моментов согласно (3) и (4): MG возрастет, а Mα упадет и при некотором новом угле α1 снова наступит их равновесие. Поэтому ротор при всех скоростях ветра V > Vo будет находиться во взвешенном состоянии. Изгибающие моменты на него будут действовать только за счет инерционных сил во время изменения величины скорости ветра. Поэтому демпфирующее устройство 7 проектируется таким образом, чтобы угловое ускорение подъема или опускания ротора при изменении величины скорости ветра приводило к инерционным нагрузкам, которые будут создавать изгибающий момент, меньший, чем создает сила веса при штиле. Это обеспечивается выбором площади поршня и сечения каналов для перетока среды из одной полости цилиндра в другую.
С дальнейшим увеличением скорости ветра угол наклона ротора α будут уменьшаться и при ураганной скорости ветра VII ротор займет почти горизонтальное положение II. В этом положении, как и во всех предыдущих, ротор не будет испытывать изгибающих напряжений. Поэтому его конструкция не должна рассчитываться на ураганные ветры, вследствие чего консольно опирающийся ротор значительно легче ротора, опирающегося на две опоры. С уменьшением угла наклона консольного ротора α при возрастании скорости ветра в меньшей мере растет крутящий момент и число оборотов ротора. Подбором параметров ротора, демпфирующего устройства и нагрузки можно даже обеспечить стабилизацию числа оборотов при достижении определенной скорости ветра. Поэтому здесь не требуются дополнительные мероприятия по ограничению числа оборотов при ураганных ветрах. Вследствие этого конструкция консольного ветроагрегата и его обслуживание упрощаются. Эти свойства позволяют использовать энергию ветра и при больших скоростях, вследствие чего повышается энергетическая эффективность консольного ветроагрегата.
Итак, при изменении направления ветра шнековый ротор поворачивается в узле поворота 5 относительно вертикальной оси и ориентируется по ветру. При изменении величины скорости ротор поворачивается в шарнире 6 относительно горизонтальной оси. С увеличением скорости ветра наклон ротора к горизонту уменьшается, уменьшаются изгибающие нагрузки на него и стабилизируется число оборотов.
Были проведены эксперименты при консольном расположении шнековых роторов диаметром 100 мм, 200 мм и 500 мм. Роторы вращались устойчиво при Mα< MG и во взвешенном состоянии, когда Mα= MG. Отрицательных явлений, вызванных консольным расположением ротора, не наблюдалось. Консольные ветроагрегаты целесообразно использовать на мощности от 1 кВт до нескольких десятков кВт.
название | год | авторы | номер документа |
---|---|---|---|
САМООРИЕНТИРУЕМЫЙ ВЕТРОАГРЕГАТ | 1996 |
|
RU2115019C1 |
ВЕТРОАГРЕГАТ | 1994 |
|
RU2078993C1 |
ВЕТРОРОТОР | 1994 |
|
RU2078250C1 |
ШНЕКОВЫЙ ВЕТРОРОТОР | 1996 |
|
RU2101560C1 |
ВЕТРОДВИГАТЕЛЬ | 1993 |
|
RU2039309C1 |
Ветряк парусный горизонтальный конический | 2023 |
|
RU2807846C1 |
Ветроэнергетическая установка | 2015 |
|
RU2622678C1 |
МОДУЛЬНАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2015 |
|
RU2607711C1 |
ПАРУСНЫЙ ВЕТРОАГРЕГАТ | 2007 |
|
RU2339841C1 |
КОНТРРОТОРНЫЙ ВЕТРОАГРЕГАТ | 2010 |
|
RU2420671C1 |
Изобретение относится к ветроэнергетике. Консольный ветроагрегат содержит наклонный к горизонтальной поверхности шнековый ротор, который состоит из ступицы и закрепленных на ней винтовых лопастей. Шнековый ротор консольно установлен на верхнюю подшипниковую опору, которая смонтирована на мачте и имеет возможность поворачиваться вокруг нее при изменении направления ветра. С целью облегчения конструкции шнекового ротора, упрощения ветроагрегата и повышения эффективности использования энергии ветра при больших его скоростях верхняя подшипниковая опора шарнирно прикреплена к узлу поворота, позволяя ротору изменять угол наклона при изменении величины скорости ветра. Кроме того, верхняя подшипниковая опора связана с узлом поворота демпфирующим устройством посредством шарниров. Демпфирующее устройство позволяет шнековому ротору плавно изменять угол наклона ротора при резких изменениях величины скорости ветра. Консольные ветроагрегаты целесообразно использовать на мощности от 1 кВт до нескольких десятков кВт. 1 ил.
Консольный ветроагрегат, содержащий наклонный к горизонтальной плоскости шнековый ротор, который состоит из ступицы и закрепленных на ней винтовых лопастей и установлен на верхнюю подшипниковую опору, смонтированную на мачте с возможностью поворота вокруг ее оси, отличающийся тем, что верхняя подшипниковая опора шарнирно прикреплена к узлу поворота, позволяя шнековому ротору изменять угол наклона, и связана с ним демпфирующим устройством посредством шарниров.
SU, авторское свидетельство, 1225912, кл | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Авторы
Даты
1998-07-20—Публикация
1996-10-22—Подача