ГЛУБИННЫЙ ШТАНГОВЫЙ НАСОС Российский патент 1999 года по МПК F04B47/00 

Описание патента на изобретение RU2132968C1

Изобретение относится к штанговым насосам и может быть использовано в нефтедобывающей промышленности для повышения рабочих дебитов нефтяных скважин с высоким газонефтяным фактором.

Известны скважинные штанговые насосы, предназначенные для откачки нефти с сопутствующей водой, газом и механическими примесями из недр земли [1].

У известных насосов ограничена возможность повышения коэффициента подачи и КПД в целом в процессе эксплуатации на реальной нефтегазовой смеси.

Наиболее близким к предлагаемому из числа известных является глубинный штанговый насос, содержащий цилиндр о размещенным в нем подвижным плунжером, имеющий в нижней части больший диаметр, чем в верхней, благодаря чему в насосе образуются две камеры - соответственно верхняя и нижняя, и шариковые клапаны [2].

Недостатком этого насоса является то, что нагнетательный клапан в веярхней части плунжера открывается только в том случае, если давление в верхней камере превышает гидростатическое давление в колонне насосно-компрессорных труб, что приводит к снижению производительности.

Поставленная задача состояла в создании устройства для подъема жидкости, позволяющего перекачивать нефть с высокой концентрацией свободного газа в режиме полуфонтана с более высоким дебитом.

Данная задача решена тем, что в глубинном штанговом насосе, содержащем цилиндр с размещенным в нем плунжером, образующим две камеры, и шариковые клапаны, цилиндр выполнен ступенчатым, а нижняя камера имеет диаметр меньший, чем верхняя.

На чертеже схематически представлена предлагаемая конструкция насоса.

Насос содержит цилиндр 1, размещенный в нем плунжер 2, всасывающий клапан 3 и нагнетательный клапан 4, а также всасывающий клапан 5 и нагнетательный клапан 6 соответственно нижней камеры 7 и верхней камеры 8, лифтовые трубы 9, штанги 10 и опору насоса 11.

Работает устройство следующим образом.

При заполнении нижней камеры 7 газожидкостной смесью при давлении, равном давлению на приеме нижнего всасывающего клапана 3 цилиндр 1 находится в крайнем верхнем положении, при этом объем нижней камеры равен объему мертвого пространства. Верхняя камера 8 в этом положении цилиндра 1 имеет наибольший объем /рабочий объем плюс мертвое пространство/ при давлении, равном давлению насоса. Нагнетательный клапан 6 находится в закрытом положении.

При движении цилиндра 1 вниз открывается всасывающий клапан 3 и газожидкостная смесь поступает в нижнюю камеру 7, увеличивая ее объем. Цикл всасывания продолжается до тех пор, пока цилиндр 1 не займет крайнее нижнее положение.

В процессе движения цилиндра 1 из крайнего верхнего положения в крайнее нижнее величина объема верхней камеры уменьшается, при этом давление в этой камере изменяется от наименьшего, соответствующего давлению на приеме насоса, до величины давления на выкиде насоса. В этот момент открывается нагнетательный клапан 6 и газожидкостная смесь из полости верхней камеры 8 перетекает в лифтовые трубы 9 /цикл нагнетания/.

При крайнем нижнем положении цилиндра 1 верхняя камера 8 будет иметь наименьший объем при давлении, равном давлению на выкиде насоса. При этом нижняя камера 7 будет иметь наименьший объем, а давление в ней будет равно давлению на приеме всасывающего клапана 3.

При ходе цилиндра 1 вверх, клапаны 3 и 4 закрыты, давление в нижней камере 7 растет, а в верхней камере 8 снижается до уравновешивания величины давления в них. Клапаны 4 и 5 открываются, и газожидкостная смесь из нижней камеры 7 перетекает в верхнюю камеру 8. Поскольку диаметр верхней камеры больше диаметра нижней, давление в обеих камерах моментально снизится до величины давления на приеме всасывающего клапана 3, который откроется и газожидкостная смесь поступает в верхнюю камеру 8 как из нижней камеры 7, так и из полости скважины.

Этот процесс будет продолжаться до того момента, пока цилиндр 1 не займет крайнее верхнее положение, когда объем верхней камеры 8 станет наибольшим, а объем нижней камеры 7 - наименьшим. Давление в обеих камерах устанавливается равным давлению на приеме насоса.

При ходе цилиндра 1 вниз цикл работы насоса повторяется.

При внедрении предлагаемого насоса на скважине дебит по данной скважине составил 60 м3/сут безводной нефти, при дебите до внедрения - 16 м3/сут безводной нефти.

Источники информации
1. Е.И.Бухаленко. Справочник. - М.: Недра, 1990, рис. 2 - 10, с. 83.

2. И.М.Муравьев, И.Т. Мищенко. Насосная эксплуатация скважин за рубежом. - М.: Недра, 1967, с. 55-62, рис. 45а.

Похожие патенты RU2132968C1

название год авторы номер документа
СКВАЖИННАЯ ШТАНГОВАЯ НАСОСНАЯ УСТАНОВКА ДЛЯ ОТКАЧКИ ГАЗОЖИДКОСТНЫХ СМЕСЕЙ 1996
  • Кошкин Константин Иванович
  • Клюшин Иван Яковлевич
RU2100652C1
ГЛУБИННО-НАСОСНАЯ УСТАНОВКА ДЛЯ ОТКАЧКИ ГАЗИРОВАННОЙ ЖИДКОСТИ С МЕХАНИЧЕСКИМИ ПРИМЕСЯМИ 1996
  • Кошкин Константин Иванович
  • Клюшин Иван Яковлевич
RU2100651C1
СКВАЖИННАЯ ШТАНГОВАЯ НАСОСНАЯ УСТАНОВКА 2001
  • Кошкин К.И.
  • Клюшин И.Я.
RU2196249C1
НАСОСНАЯ УСТАНОВКА ДЛЯ ПОДЪЕМА ЖИДКОСТИ ИЗ НЕФТЯНОЙ СКВАЖИНЫ 1997
  • Кошкин Константин Иванович
RU2112890C1
УСТРОЙСТВО ДЛЯ ЗАКАЧКИ ГАЗОЖИДКОСТНОЙ СМЕСИ В ПРОДУКТИВНЫЙ ПЛАСТ 2003
  • Кошкин К.И.
  • Клюшин И.Я.
  • Кудряшов С.И.
  • Горбунов С.И.
RU2257491C2
УСТРОЙСТВО ДЛЯ ПЕРЕКАЧКИ ФЛЮИДОВ 2000
  • Кошкин К.И.
RU2176330C1
СКВАЖИННЫЙ ПЛУНЖЕРНЫЙ НАСОС 2001
  • Кошкин К.И.
RU2184270C1
СПОСОБ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ УГЛЕВОДОРОДА С ПОДОШВЕННОЙ ВОДОЙ И ДОБЫЧИ УГЛЕВОДОРОДА ШТАНГОВЫМ НАСОС-КОМПРЕССОРОМ С РАЗДЕЛЬНЫМ ПРИЕМОМ УГЛЕВОДОРОДА И ВОДЫ 2003
  • Клюшин И.Я.
RU2247228C2
СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ НА МЕСТОРОЖДЕНИИ УГЛЕВОДОРОДОВ С ПОДОШВЕННОЙ ВОДОЙ И ДОБЫЧИ НЕФТИ И ВОДЫ НАСОС-КОМПРЕССОРАМИ С РАЗДЕЛЬНЫМ ПРИЕМОМ ДЛЯ БЕСКОНУСНОЙ ЭКСПЛУАТАЦИИ СКВАЖИНЫ 2005
  • Клюшин Иван Яковлевич
  • Клюшин Александр Иванович
RU2293214C2
УСТРОЙСТВО ДЛЯ ПЕРЕКАЧКИ ГАЗИРОВАННОЙ ЖИДКОСТИ С МЕХАНИЧЕСКИМИ ПРИМЕСЯМИ 2003
  • Кошкин К.И.
RU2249724C2

Реферат патента 1999 года ГЛУБИННЫЙ ШТАНГОВЫЙ НАСОС

Насос предназначен для использования в нефтедобывающей промышленности для повышения рабочих дебитов нефтяных скважин с высоким газонефтяным фактором. Глубинный штанговый насос содержит цилиндр с размещенным в нем неподвижным плунжером, образующим две камеры, верхнюю и нижнюю, и шариковые клапаны. Цилиндр выполнен ступенчатым с возможностью осевого перемещения, а нижняя камера имеет диаметр меньше, чем верхняя. Существенно повышается производительность насоса. 1 ил.

Формула изобретения RU 2 132 968 C1

Глубинный штанговый насос, содержащий цилиндр с размещенным в нем неподвижным плунжером, образующим две камеры, верхнюю и нижнюю, и шариковые клапаны, отличающийся тем, что цилиндр выполнен ступенчатым с возможностью осевого перемещения, а нижняя камера имеет диаметр меньший, чем верхняя.

Документы, цитированные в отчете о поиске Патент 1999 года RU2132968C1

Е.А.Бухаленко, Справочник
- М.: Недра, 1990, р.2-10, с.83
И.М.Муравьев, И.Т.Мищенко
Насосная эксплуатация скважин за рубежом
- М.: Недра, 1967, с.55-62, рис.45а
Устройство для очистки сточных вод 1981
  • Русина Ольга Николаевна
SU998384A1
CA 1334732 A, 1995
US 27647940 A, 1956
Скважинная штанговая насосная установка 1990
  • Троицкий Виталий Феодосеевич
  • Уланов Виктор Владимирович
SU1733693A1
Скважинная штанговая насосная установка 1987
  • Гаджиев Самед Вели Оглы
SU1588910A1
Скважинный штанговый насос двойного действия 1987
  • Гасанов Тофик Мустафа Оглы
  • Салимов Салман Абдул Гасан Оглы
  • Джабаров Габиб Гасан Оглы
  • Агаларов Джавад Мирджалал Оглы
SU1514973A1
SU 757767 A, 1980
Глубинный насос 1957
  • Федотов К.В.
SU108229A1

RU 2 132 968 C1

Авторы

Кошкин К.И.

Клюшин И.Я.

Даты

1999-07-10Публикация

1998-02-11Подача