СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЛОСКИХ ЗОН ПОЛУПРОВОДНИКА В МДП-СТРУКТУРАХ Российский патент 1999 года по МПК H01L21/66 

Описание патента на изобретение RU2133999C1

Изобретение относится к области измерения и контроля электрофизических параметров полупроводников и может быть использовано для оценки качества технологического процесса при производстве твердотельных микросхем и приборов на основе МДП-структур.

Напряжение плоских зон UFB является одним из основных и широко используемых параметров МДП-структур, величина которого определяется суммарной плотностью зарядов (Qф) в диэлектрике и на границе раздела диэлектрик-полупроводник. В свою очередь величина Qф полностью определяется физическими свойствами диэлектрика и полупроводника и особенностями технологического процесса изготовления приборов.

В настоящее время для исследований свойств МДП-структур и, в частности, для определения UFB, широко используется метод вольтфарадных характеристик (ВФХ) [1]. Однако в этом случае для определения UFB необходимо сопоставление теоретических (расчетных) и экспериментальных ВФХ, что, во-первых, не обеспечивает экспрессности измерений, и, во вторых, не всегда возможно, так как для экспериментальных МДП-структур в ряде случаев не выполняются условия, необходимые для расчета теоретических ВФХ (например, наличие утечек в диэлектрике и большая плотность поверхностных состояний и ловушек на границе диэлектрик-полупроводник не позволяет с достаточной точностью вычислять концентрацию легирующей примести в полупроводнике и завышает величину емкости структуры в режиме плоских зон).

Известен способ определения UFB при освещении МДП-структуры импульсами света из области собственного поглощения полупроводника [2]. Сущность способа заключается в подаче и регистрации на МДП-структуре такого напряжения смещения Uсм, при котором сигнал фото-эдс при освещении МДП-структуры принимает минимальное значение.

Недостатками данного способа являются:
необходимость специальной оптической системы и источника света определенной длины волны излучения;
невозможность определения UFB для непрозрачных для света МДП-структур (образцы с непрозрачными электродами в закрытых корпусах);
искажение минимального сигнала фото-эдс за счет перезарядки поверхностных состояний (ПС) светом - это затрудняет определение UFB, особенно при концентрации ПС больших
N ~ 1011 эВ-1 см-2
За прототип выбран способ определения UFB, описанный в [3].

Для определения напряжения плоских зон используется простая мостовая схема измерения емкости, которая балансируется одновременно по двум сигналам - малому высокочастотному тестовому сигналу и большому сигналу обедняющего импульса U1 при подаче на структуру постоянного напряжения смещения Uсм, величина которого может изменяться. При этом определяется соответственно дифференциальная (Cn) и интегральная (C1) емкости МДП-структуры.

В режиме плоских зон, как показывают расчеты, должно выполняться соотношение:
C1 = 2Cn. Напряжение смещения, при котором выполняется это соотношение, и будет являться напряжением UFB.

Недостатком данного способа является необходимость измерения в нем дифференциальной емкости, которую измеряют на малом тестовом сигнале амплитудой порядка KT/q (30-50 мВ),
где K - постоянная Больцмана, T - температура МДП-стурктуры, q - заряд электрона). Это накладывает высокие требования к чувствительности применяемой измерительной техники. Кроме того, можно показать, что чувствительность дифференциальной и интегральной емкости по отношению к отклонению МДП-структуры от режима UFB различная. Так, например, при обедняющих импульсах напряжения, создающих изгиб зон
ψS ≃ 80 KT/q(~2,0 B)
и при отклонении начального изгиба зон от состояния плоских зон на 2 KT/q (~50 мВ) C1 и Cn изменяются на 14,5% и 1,3% соответственно. При одном и том же Uсм ≠ UFB (вблизи ψS = 0) дифференциальная емкость изменяется в десять раз меньше, чем соответствующая интегральная. Это, в конечном счете, приводит к значительному уменьшению точности определения UFB (~10%), особенно для структур с высокой плотностью поверхностных состояний, которые делают вклад в измеряемую дифференциальную емкость.

В таблице 1 и 2 приведены величины относительного изменения (в процентах) интегральной и дифференциальной емкости. Расчеты сделаны для фиксированных начальных отклонений плоских зон: Uсм = UFB на величину
для обедняющих импульсов напряжения, создающих изгиб зон в полупроводнике ψS = (40, 80, 120, 160, 200) KT/q.

Технический результат, обеспечиваемый изобретением, увеличение точности определения UFB в широком диапазоне значений концентрации легирующей примеси в полупроводнике (N ~ 1011 - 1018 см-3) и при высокой плотности поверхностных состояний на границе раздела диэлектрик-полупроводник.

Nss ≥ 1011 эВ-1 см-2
Этот результат достигается тем, что в известном способе на МДП-структуру подают дополнительно второй обедняющий импульс напряжения с амплитудой U2 ≥ 2U1, совмещают во времени первый и второй импульсы, а из разности их амплитуд получают третий импульс U3, измеряют интегральные емкости C2 и C3 соответственно, и напряжение UFB МДП-структуры определяют по напряжению смещения Uсм при выполнении условия:
1/C1 + 1/C2 = 1/C3
Покажем, что условие (1) выполняется только в режиме плоских зон, т.е. при Uсм = UFB.

Интегральная емкость C, соответствующая приложению к структуре обедняющего импульса напряжения достаточно большой амплитуды (U >> KT/q), может быть определена как отношение приращения заряда Q ( ψS ) ОПЗ полупроводника к соответствующему приращению поверхностного изгиба зон ψS , т.е.


Используя известные соотношения для дифференциальной емкости Cn и заряда ОПЗ Q, имеем:
Cn = (qNεn/2ψS)1/2 (3)
Cn = εn/W Q = qNW (4)
И учитывая, что в точке плоских зон C = 2Cn получаем:

Тогда выражение (1) можно переписать в виде:

т.к. Q2 = Q1 =
Таким образом, выражение (1) доказано.

Для оценки чувствительности способа по сравнению с прототипом воспользуемся для интегральной емкости C' и дифференциальной емкости C'n при начальных изгибах зон , от которых подаются обедняющие импульсы напряжения не равные нулю, т.е. и Uсм ≠ UFB, где C, Cn - значения емкостей при Uсм = UFB.



Результаты расчетов приведены в таблицах 1 и 2. Из них видно, что при Uсм ≠ UFB интегральная емкость изменяется примерно в десять раз больше, чем дифференциальная емкость, и поэтому такое изменение можно регистрировать с большей точностью. На фиг. 1 приведены эпюры подаваемых на МДП-структуру обедняющих импульсов напряжения U1, U2 и U3. Из фиг. 1 видно, что импульс U3 получают от верхнего уровня значения величины амплитуды первого импульса, до верхнего уровня значения величины амплитуды второго импульса, т.е. по своей амплитуде импульс U3 равен разности амплитуд U2 - U1. Это сделано для того, чтобы выполнить условие жесткой связи между C1, C2 и C3, для Uсм = UFB. Для того, чтобы обеспечить условие интегральности измеряемой емкости C3, U2 выбирают исходя из выполнения условия U2 ≥ 2U1.

Так как соотношение (1) относится к ОПЗ полупроводника, то с учетом емкости диэлектрика C0 МДП-структуры можно записать следующие выражения для интегральной емкости Cк МДП-структуры:


На фиг. 2 приведена схема простого устройства, позволяющего реализовать предлагаемый способ определения UFB.

Здесь:
1 - емкостная мостовая схема, состоящая из емкости МДП-структуры (CМДП), нагрузочных емкостей Cн1 = Cн2, магазинов емкостей M1, M2 - состоящего из M'2 и M''2. M1 и M2 состоят из набора эталонных емкостей Cэт.

2 - генератор прямоугольных импульсов типа Г5-56.

3 - источник постоянного напряжения смещения (например Б5-43)
4 - регистрирующее устройство - осциллограф типа C1-70.

5 - сдвоенный переключатель П5 для переключения магазинов емкостей M1, M'2 и M''2.

Из сопоставления выражений (9) и (10) видно, что реализацию соотношения (1) между емкостями C1, C2 и C3 легко осуществить, используя емкостную мостовую схему (фиг. 2), в одно из плеч которой включена МДП-структура с емкостью CМДП и нагрузочной емкостью Cн, а во второе плечо - два последовательно включенных магазина емкостей M1 и M2, и соответственно с нагрузочной емкостью Cн1 = Cн2. Магазин M1 служит для установки баланса емкости C0, а M2 состоит из двух независимых магазинов емкостей M'2 и M''2 для C1 и C2 соответственно. В режиме плоских зон мостовая схема будет уравновешена на импульсе U1 для емкости C1, на импульсе U2 для емкости C2 и на импульсе U3 для емкости C3, которую получают путем последовательного соединения магазинов емкостей M'2 и M''2. Переключатель П5 находится в положении 4 (см. фиг. 2).

Последовательно действий при определении UFB следующая:
Включают МДП-структуру в одно из плеч моста, а во второе плечо моста включают последовательно-включенные магазины M1 и M2. На магазине M1 устанавливают емкость Cэт, равную C0 (П5 в положении 1), а на магазине M2 устанавливают емкость Cэт = C1 (П5 в положении 3), при последовательном соединении магазинов M'2 и M''2, (П5 находится в положении 4), на магазине M2 устанавливают емкость, равную C3.

Подают напряжение смещения Uсм на МДП-структуру.

Падают на структуру обедняющие импульсы напряжения:
U1 > 100 KT/q ≃ 2,5 B, U2 ≃ 5B.

Отметим, что длительность Δtимп обедняющих импульсов U1 и U2, подаваемых на МДП-структуру, так же как и в прототипе, выбирают исходя из условия сохранения состояние обеднения в структуре после подачи обедняющего импульса. Постоянная времени релаксации tрел состояния обеднения для большинства исследуемых структур определяется генерационно-рекомбинационными параметрами полупроводника, и обычно находится в диапазоне 0,1 - 10 сек. Можно использовать соотношения для Δtимп ≤ tрел/20. Предлагается использовать Δtимп = = 1 - 10 мкс, при частоте следования:
f = 10 - 50 кГц. Поэтому tрел можно пренебречь.

Совмещаем во времени первый и второй импульсы напряжения и из разности их амплитуд получаем третий импульс U3.

Отметим, что интервал времени t между импульсами U1 и U2 задаем t < tф, где tф - длительность фронта импульса. Т.к. для стандартных генераторов типа Г5-56 tф < 10 нс, то этой величиной по сравнению с Δtимп можно пренебречь.

Изменяем значения емкостей в магазине M'2 и M''2 до получения условия баланса моста на импульсах U1 и U2 соответственно.

Находим такое Uсм, при котором при последовательном соединении M'2 и M''2 на импульсе U3 баланс моста не нарушается. Это будет выполняться при Uсм = UFB, так как в этом случае выполняется условие (1). Таким образом, изменяя напряжение Uсм регистрируют условие, при котором переключение магазинов емкостей из положений, соответствующих емкостям C1 и C2, на положение, соответствующее емкости C3, не нарушает баланса моста. При этом
UFB = Uсм.

Существенным достоинством предложенного способа является простота определения UFB, при регистрации Uсм = UFB непосредственно. Способ позволяет без всяких расчетов определять UFB с высокой точностью ( ~1%) в широком интервале концентрации легирующей примести в полупроводнике (N ~ 1011 - 1018 см-3), толщин диэлектрика МДП-структуры (d ~ 0,01 - 1 мкм), плотности поверхностных состояний границы раздела диэлектрик-полупроводник (N ~ 1011 эВ-1 см-2).

Способ не требует для своей реализации знания параметров полупроводника и диэлектрика, не требует специальных образцов для измерения. Способ может быть реализован на стандартной радио-измерительной аппаратуре. По сравнению с прототипом в нем отсутствует малосигнальный тестовый импульс, и это позволяет значительно повысить точность определения UFB (в 2 - 3 раза) и уменьшить требования к чувствительности измерительной регистрирующей аппаратуре.

Литература:
[1] Zaininger K.H., Heiman F.P. - The Technique as an Analytical Tool - Solid State Technology Vol. 13 (1973) N 6 p. 47-55.

[2] Yun B. H. - Direct measurement of flat-bend voltage in MOS by infrared exception.

Applied Physics letters Vol. 21 (1972) N 5 p. 194-195.

[3] Бородзюля В. Ф., Голубев В.В. - Методы электрического тестирования заряда в диэлектрике и на поверхностных состояниях в МДП-структурах. Тезисы докладов Российской научно-технической конференции по физике диэлектриков с международным участием. "Диэлектрики - 93" Часть 2, стр. 100.

Похожие патенты RU2133999C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЛОСКИХ ЗОН ПОЛУПРОВОДНИКА В МЕТАЛЛ-ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК-СТРУКТУРАХ 2000
  • Бородзюля В.Ф.
RU2212078C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПОВЕРХНОСТНОГО ИЗГИБА ЗОН ПОЛУПРОВОДНИКА ψ В МДП-СТРУКТУРЕ 1997
  • Бородзюля В.Ф.
  • Рамазанов А.Н.
RU2117956C1
СПОСОБ РЕГИСТРАЦИИ ИЗЛУЧЕНИЯ ЛАВИННЫМ МЕТАЛЛ-ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК (МДП)-ФОТОПРИЁМНИКОМ 2000
  • Бородзюля В.Ф.
RU2205473C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ДИЭЛЕКТРИЧЕСКИХ ЖИДКОСТЕЙ 1995
  • Гусев В.Г.
  • Мулик А.В.
  • Николаев В.А.
RU2101680C1
СВЕРХРЕШЕТКА 1992
  • Карева Г.Г.
RU2062529C1
ВРЕМЯИМПУЛЬСНЫЙ КВАДРАТИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ 1998
  • Сафьянников Н.М.
  • Муравник Д.Л.
RU2149449C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ КОНЦЕНТРАЦИИ ЛЕГИРУЮЩЕЙ ПРИМЕСИ В ПОЛУПРОВОДНИКАХ 2009
  • Грохотков Иван Николаевич
  • Яфясов Адиль Маликович
  • Филатова Елена Олеговна
  • Божевольнов Владислав Борисович
RU2393584C1
ФОРМИРУЮЩАЯ ЛИНИЯ ВЫСОКОГО НАПРЯЖЕНИЯ ДЛЯ ПОЛУЧЕНИЯ ИМПУЛЬСОВ НАНО- И МИКРОСЕКУНДНОГО ДИАПАЗОНА ПО ФОРМЕ БЛИЗКИХ К ПРЯМОУГОЛЬНОЙ 1993
  • Вехорева Л.Т.
  • Кучинский Г.С.
  • Шилин О.В.
RU2092971C1
ОЗОНАТОР 1995
  • Абрамов А.А.
RU2088519C1
СПОСОБ КУЛОНОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ НАНОСТРУКТУР ТРАНЗИСТОРА n-МОП В ТЕХНОЛОГИЯХ КМОП/КНС И КМОП/КНИ 2010
  • Кабальнов Юрий Аркадьевич
  • Качемцев Александр Николаевич
  • Киселев Владимир Константинович
RU2439745C1

Иллюстрации к изобретению RU 2 133 999 C1

Реферат патента 1999 года СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЛОСКИХ ЗОН ПОЛУПРОВОДНИКА В МДП-СТРУКТУРАХ

Изобретение относится к измерению и контролю электрофизических параметров полупроводников и может быть использовано для оценки качества технологического процесса при производстве твердотельных микросхем и приборов на основе МДП-структур. Способ заключается в том, что на МДП-структуру подают напряжение смещения Uсм и обедняющие импульсы напряжения U1 и U2 ≥ 2U1, совмещают по времени импульсы U1 и U2 и из разности их амплитуд получают третий импульс U3, измеряют на них интегральные емкости C1, C2 и C3 соответственно, а напряжение плоских зон МДП-структур определяют по Uсм при выполнении условия: 1/С1 + 1/C2 = 1/С3. Технический результат, обеспечиваемый изобретением, - получение возможности просто при непосредственной регистрации Uсм = UFB, без сложных расчетов определять UFB с высокой точностью (до 1,0%) в широком диапазоне концентраций легирующей примеси в полупроводнике (N ~ 1011 - 1018 см-3), толщин диэлектрика МДП-структуры (d ~ 0,01 - 1 мкм), плотности поверхностных состояний на границе раздела диэлектрик - полупроводник (N ~ 1011 эВ-1 см-2). Способ может быть выполнен на стандартной радиоизмерительной аппаратуре. Измерение емкости области пространственного заряда полупроводника в режиме плоских зон дает возможность по известному соотношению определить уровень легирования полупроводника. 2 ил., 2 табл.

Формула изобретения RU 2 133 999 C1

Способ определения напряжения плоских зон полупроводника в МДП-структурах, включающий подачу и регулирование постоянного напряжения смещения, подачу на структуру обедняющего импульса напряжения, называемого первым, и измерение на нем интегральной емкости области пространственного заряда полупроводника, отличающийся тем, что на МДП-структуру дополнительно подают второй обедняющий импульс напряжения с амплитудой, равной или большей удвоенной амплитуды первого обедняющего импульса, совмещают во времени первый и второй обедняющие импульсы, дополнительно измеряют интегральные емкости на втором обедняющем импульсе и на разности первого и второго обедняющих импульсов, называемой третьим импульсом, а напряжение плоских зон МДП-структуры определяют по напряжению смещения при выполнении условия
1/С1 + 1/С2 = 1/С3,
где С1 - интегральная емкость на первом импульсе;
С2 - интегральная емкость на втором импульсе;
С3 - интегральная емкость на третьем импульсе.

Документы, цитированные в отчете о поиске Патент 1999 года RU2133999C1

Бородзюля В.Ф, Голубев В.В
Методы электрического тестирования заряда в диэлектрике и на поверхностных состояниях в МДП-структурах./Тезисы докладов Российской научно-технической конференции по физике диэлектриков с международным участием
Домовый номерной фонарь, служащий одновременно для указания названия улицы и номера дома и для освещения прилежащего участка улицы 1917
  • Шикульский П.Л.
SU93A1
- Санкт-Петербург, 22-24 июня 1993, часть 2, с.100
Yun B.H
Direct measurement of flat - bend voltage in MOS by infrared exception
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Zaininger K.H., Heiman F.P
The Technique as an Analytical Tool
Насос 1917
  • Кирпичников В.Д.
  • Классон Р.Э.
SU13A1
Технология СБИС/Под ред
С
Зи, кн.2
- М.: Мир, 1986, с.102-103.

RU 2 133 999 C1

Авторы

Бородзюля В.Ф.

Даты

1999-07-27Публикация

1997-08-07Подача