Изобретение относится к строительству, а именно к защите инженерных сооружений (гражданских, промышленных, линейных, различных подземных коммуникаций), возведенных на склонах в области вечной мерзлоты, от деформаций, вызванных криосолифлюкционным смещением пород. Величина криосолифлюкционного смещения пород при оттаивании льдистых горизонтов (сезонноталого слоя), на месте которых формируются слабые структурные связи (контакты коагуляционного типа), изменяется от сантиметров до нескольких метров. Это приводит к затруднению или полному прекращению эксплуатации инженерных сооружения.
Известен способ крепления откосов, включающий нарезание вдоль откоса по наклонным линиям многочисленных водоотводных канавок, в которые укладывают металлические желобки (Конструкции крепления откосов. МКИ E 02 D 29/02, 88B2 Япония, N 46-17006 Заявитель Явата Сэйтэцу К.К. См. Изобретения СССР и зарубежных стран. Аннотированный указатель. - Новосибирск, 1977. с. 199 - 200).
Недостатком такого способа являются низкая эффективность и недостаточная надежность при его реализации в области вечной мерзлоты.
Наиболее близким техническим решением (способом) к заявляемому является способ обработки слабого грунта, заключающийся в выполнении ряда скважин по падению склона, заполняемых особым составом, в частности высокомолекулярным раствором.
Недостатками рассматриваемого способа является невозможность управления физико-механическими свойствами грунтов склона с целью предотвращения деформаций инженерных сооружений, расположенных на склоне (Способ обработки слабого грунта МКИ E 2 D 3/00 Япония, N 46-27971 См. Изобретения СССР и зарубежных стран. Аннотированный указатель - Новосибирск, 1977, с. 132).
Предлагаемое изобретение позволяет более надежно защитить инженерные сооружения, расположенные на склонах в области вечной мерзлоты, от деформаций, вызванных криосолифлюкционным смещением пород.
Сущность изобретения состоит в том, что способ защиты инженерных сооружений, расположенных на склонах в области вечной мерзлоты, от деформаций, вызванных криосолифлюкционным смещением пород, включает нарезку прорезей в грунте и заполнение их обезвоживающим материалом, отличается тем, что прорези выполняют нормально к поверхности склона до максимальной глубины оттаивания и заполняют бентонитовой глиной с послойным уплотнением, причем угол наклона прорезей к линии падения склона 75 - 80o.
Расстояние между прорезями (L) определяется из соображений grad grad (где, grad градиент относительного термодинамического потенциала грунтовой влаги по его абсолютной величине от бентонитовой глины; grad градиент относительного термодинамического потенциала грунтовой влаги по его абсолютной величине в песчано-глинистых грунчтах).
Выполнение прорезей под углом к линии падения склона позволяет избежать длительного обводнения грунтов вблизи глинистых экранов (являющихся водоупором) в период обильного выпадения атмосферных осадков. Фильтрация воды осуществляется вдоль бентонитового прослоя (по полостям и каналам образованным при выталкивании шлиров и линз льда) вплоть до разгрузки за пределами склона (больного участка).
На фиг. 1 изображена схема проведения защиты инженерных сооружений от деформаций, вызванных криосолифлюкционным смещением пород, общий вид; на фиг. 2 - разрез А-А фиг. 1. Предлагаемая схема включает щелевидные прорези 1, нарезанные в песчано-глинистом грунте 3, заполненные бентонитовой глиной 2. ξ - мощность сезонноталого слоя, 4 - линия падения склона.
Реализация способа осуществляется следующим образом. По линии падения склона производится разметка прорезей, исходя из расстояния L. Наносятся и заркепляются оси, по которым выполняются прорези. Нарезка прорезей осуществляется механическим или ручным способом по нормали к поверхности склона до максимальной глубины оттаивания. Ширина прорези принимается такой, чтобы обеспечить необходимую для каждого конкретного случая величину grad После этого производится заполнение прорезей бентонитовой глиной с послойным уплотнением.
При промерзании в бентонитовой глине развиваются термодинамические потенциалы грунтовой влаги в 4 -5 раз превышающие подобные значения, характерные для вмещающих грунтов, (преимущественно пылевато-глинистой фракции кварц-полевошпатового состава). Экспериментальные исследования показывают, что величина относительного термодинамического потенциала грунтовой влаги (μw) по его абсолютной величине к бентонитовой глине достигает 90 КДж/кг, в то время как в пылеватой супеси кварц-полевошпатового состава соответствующее значение μw не превышает 20 КДж/кг. Кроме того, бентонитовая глина обладающая высокой ультрапористостью и большим содержанием прочно и рыхлосвязанной (незамерзающей) воды (до 60 - 70% от ее суммарного содержания при температурах пород до -5oC и ниже) в течение всего зимнего периода сохраняет высокие значения градиентов по термодинамическому потенциалу грунтовой влаги, превышающие аналогичные значения в пылеватой супеси более чем в 10 раз.
Это приводит к изменению направления миграционного потока влаги (в естественных условиях миграционный поток направлен к фронту промерзания) в сторону бентонитовой глины и к более интенсивному обезвоживанию и уплотнению менее дисперсных пород.
При оттаивании происходит практически повторение развития тех же самых физико-химических процессов, что и при промерзании, но с разными движущими силами. В этом случае бентонитовая глина выступает в роли высокомолекулярных дисперсных систем с чрезвычайно высокой удельной поверхностью (Sуд), превышающей 900 м2/г (например, для каолинитовой глины Sуд не превышает 79 м2/г, а для кварц-полевошпатовых супесей менее 10 м2/г), способных гидратировать влагу из смещающих пород. Поэтому и в период оттаивания пород происходит обезвоживание песчано-глинистого грунта под действием градиента энергии Гиббса.
Таким образом, бентонитовая глина, с одной стороны, является активным реагентом гидратации влаги из менее дисперсных пород, а, с другой, она легко отдает влагу при наложении любых других внешних или внутренних сил на нее, как, например, при сегрегации льда, испарении, транспирации влаги и т.д.
Таким образом, в случае реализации предлагаемого способа структурная прочность песчано-глинистых грунтов по сравнению с не оборудованным склоном повышается на 1 - 3 порядка. В результате смещение грунтов на оборудованном склоне практически не наблюдается. Устойчивая работа инженерного сооружения сохраняется на весь период эксплуатации. Одновременно реализуется возможность размещения на склоне сооружений, передающих на грунты основания повышенную нагрузку, т.е. нагрузку, которую не могли воспринять грунты до увеличения их структурной прочности.
В предлагаемом изобретении положительный эффект заключается в следующем:
- управление деформациями инженерных сооружений, вызванных криосолифлюкционным смещением пород на склонах (уменьшая их интенсивность путем изменения условий формирования структурной прочности):
- простота и экономическая целесообразность технологии устройства и эксплуатации предлагаемого способа;
- возможность возведения более тяжелых инженерных сооружений;
- возможность освоения территорий ранее не пригодных для строительства инженерных сооружений.
Изобретение относится к строительству, а именно к защите инженерных сооружений, возведенных на склонах в области вечной мерзлоты, от деформаций, вызванных криосолифлюкционным смещением дисперсных пород. Сущность предлагаемого изобретения состоит в нарезке прорезей в грунте и заполнении их обезвоживающим материалом. Прорези выполняют по определенной схеме. Заполнение прорезей специальным материалом позволяет управлять физико-механическими свойствами грунтов и более надежно защищать инженерные сооружения, расположенные на склонах в области вечной мерзлоты, от деформаций, вызванных криосолифлюкционным смещением пород. 2 ил.
Способ защиты инженерных сооружений, расположенных на склонах в области вечной мерзлоты, от деформаций, вызванных криосолифлюкционным смещением пород, включающий нарезку прорезей в грунте и заполнение их обезвоживающим материалом, отличающийся тем, что прорези нарезают нормально к поверхности склона до максимальной глубины оттаивания и заполняют бентонитовой глиной с послойным уплотнением, причем угол наклона прорезей к линии падения склона 75 - 80o.
Способ изготовления звездочек для французской бороны-катка | 1922 |
|
SU46A1 |
Способ изготовления звездочек для французской бороны-катка | 1922 |
|
SU46A1 |
Браславский В.Д | |||
и др | |||
Противооползневые конструкции на автомобильных дорогах | |||
- М.: Транспорт, 1985, с.150 - 156 | |||
Способ получения морфия из опия | 1922 |
|
SU127A1 |
Железобетонный фасонный камень для кладки стен | 1920 |
|
SU45A1 |
Веникодробильный станок | 1921 |
|
SU53A1 |
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба | 1919 |
|
SU54A1 |
RU 2059752 C1, 10.05.96. |
Авторы
Даты
1999-08-27—Публикация
1998-01-22—Подача