СПОСОБ ИЗОЛЯЦИИ ЗОН ПОГЛОЩЕНИЯ В СКВАЖИНАХ Российский патент 1999 года по МПК E21B33/138 

Описание патента на изобретение RU2139410C1

Предлагаемое изобретение относится к газонефтедобывающей промышленности, в частности к изоляции зон поглощения в скважинах на период проведения капитального и подземного ремонтов, а также при вводе скважин в эксплуатацию после бурения.

Широко известны способы изоляции зон поглощения в скважинах, при которых в зону поглощения закачивают различные блокирующие составы: солевые и полимерные высоковязкие растворы, всевозможные буровые растворы и специальные дисперсные системы на водной основе (1).

Однако указанные способы изоляции зон поглощения, особенно в условиях аномально-низких пластовых давлений (АНПД) и продуктивных коллекторов с высокими фильтрационно-емкостными характеристиками, являются малоэффективными из-за недостаточной вязкости, низкой тиксотропности, стабильности и высокой фильтрации блокирующих растворов, приводящими к большим поглощениям промывочной жидкости, затрудняющими вызов притока и снижающими добывные возможности скважин.

Из известных способов изоляции зон поглощения в скважинах наиболее близким к заявляемому является способ по патенту N 1771507, в соответствии с которым в зону поглощения закачивают вязкий раствор - инвертно-мицеллярную дисперсию, включающую следующие компоненты при их соотношении, мас.%:
Шлам от производства сульфонатных присадок к смазочным маслам или присадки на его основе - 7,5 - 40
Стабильный конденсат - 1,7 - 15
Эмультал - 0,6-2
Карбонат кальция - 2,0-20
Водная фаза - Остальное до 100
Причем одновременно с инвертно-мицеллярной дисперсией дополнительно закачивают воду или раствор хлористого кальция при их соотношении 1:1,25 до 1: 1,5 (2).

К недостаткам прототипа следует отнести неспособность системы образовывать высоковязкую неньютоновскую жидкость (эффективная вязкость 1750 Па•с) в насосно-компрессорных трубах в процессе ее закачки и продавки в зону поглощения, обладающую высокой эффективной вязкостью, структурно-механическими и тиксотропными свойствами и обеспечивающую качественное и безопасное глушение скважин для проведения ремонтно-восстановительных работ, особенно в условиях АНПД.

Целью предлагаемого изобретения является повышение эффективности изоляции зон поглощения путем увеличения эффективной вязкости, структурно-механических свойств, тиксотропной структуры и устойчивости закачиваемой смеси, особенно в скважинах с высокой степенью кавернозности продуктивного коллектора и АНПД.

Поставленная цель достигается тем, что в известном способе изоляции зон поглощения в скважинах, включающем закачку блокирующего состава и продавочной жидкости в зону поглощения скважины, одновременно закачивают не менее двух составов, образующих в процессе смешения и продвижения в стволе скважины неньютоновскую высоковязкую дисперсную систему, например состав N1 и N2.

Состав N 1, мас.%:
Шлам от производства сульфонатных присадок к смазочным маслам или присадки на его основе - 45 - 48
Синтетические жирные кислоты (СЖК) - 1-1,5
Стабильный конденсат - 1 - 4
Водный раствор хлористого кальция пересыщенный, плотность 1300 - 1460 кг/см3 - Остальное до 100
Состав N 2, мас.%:
Гидроксид натрия - 5-9
Сульфат натрия - 3-5
Карбоксилметилцеллюлоза (КМЦ) - 0,7-1
Карбонат натрия - 6-9
Химически осажденный мел - 2-8
Вода - Остальное до 100
Причем составы готовят отдельно и закачивают в скважину в соотношении 1: 1.

Введение в раствор химически активной группы реагентов (гидроксида натрия, сульфата натрия, хлористого кальция, карбоната натрия) позволяет получить в углеводородной среде в результате активного химического взаимодействия легко растворимую в воде и кислотных растворах тонкодисперсную фазу. Получению дисперсной фазы способствуют процессы образования кристаллогидратов путем связывания молекул растворителя (воды). Эти два явления приводят к увеличению количества твердой фазы в блокирующем составе, а следовательно, и к изменению его технологических характеристик.

Необходимость изоляции зон поглощения двумя составами обусловлена технологическими и физическими основами глушения скважин, техническими характеристиками насосных агрегатов (типа ЦА-320), получением блокирующего состава на углеводородной основе с максимальными технологическими показателями, изменением их во времени и свойствами хим. реагентов, составляющих активную группу. Необходимо отметить, что предлагаемый способ изоляции дает возможность химическим путем вывести из раствора ионы кальция (образование дисперсной фазы) и нейтрализовать карбоксилметилцеллюлозу (образование белых хлопьев наполнителей) прежде, чем раствор попадет в интервал перфорации скважины.

Использование такой совокупности признаков для достижения поставленной цели ранее не известно. Оно позволяет получить в скважине блокирующие растворы с высоким показателем тиксотропной структуры, максимальной эффективной вязкостью, широким диапазоном изменения структурно-механических параметров во времени, морозостойкостью, низкой степенью загрязнения призабойной зоны пласта (ПЗП) за счет меньшей глубины проникновения, возможностью безопасного глушения скважин, особенно в условиях АНПД.

На основании вышеизложенного считаем, что предложенный способ изоляции зон поглощения в скважине удовлетворяет требованию критериям "новизны" и "изобретательский уровень".

Конкретно изобретение поясняется таблицами и графиками (см. чертеж). В табл. 1 представлены рецептуры исходных составов N1 и N2 для получения блокирующих растворов. В табл. 2 представлены технологические показатели блокирующих растворов после смешения составов N1 и N2, а на чертеже показано изменение эффективной вязкости блокирующего раствора и прототипа во времени.

Пример выполнения способа: для приготовления состава N 1 в подогретую до 55oC воду засыпают кристаллический кальций для получения пересыщенного раствора плотностью 1300 - 1460 кг/м3, достаточный для получения расчетного количества дисперсной фазы в блокирующем растворе. Затем маленькими порциями вводят предварительно перемешанную углеводородную часть (шлам, конденсат, эмульгатор). После смешивания и эмульгирования всего объема жидкости на смесительной установке "Воронеж" полученную эмульсию перемешивают еще 5-10 минут до полной гомонизации. Условную вязкость состава N 1 определяют на визкозиметре СПВ-5, а плотность - ареометром АБР-1.

Для приготовления состава N2 необходимо подогреть воду до 40 - 50oC и при постоянном перемешивании ввести хим. реагенты в следующей последовательности: NaOH; Na2SO4; КМЦ. Через 30 - 40 минут после перемешивания на смесительной установке (300-400 об/мин) до получения устойчивой суспензии.

Лабораторный контроль о готовности составов осуществляют замером следующих показателей:
Состав N1
Условная вязкость - 80 - 150 с
Плотность - 1,20 - 1,26 г/см2
Состав N2
Условная вязкость - 60 - 80 с
pH - 11-12
Плотность - 1,20 - 1,28 г/см3
Далее приготовленные составы (табл. 1) смешивают для получения блокирующего раствора и исследуют на фильтрацию, эффективную вязкость, термостабильность, условную вязкость и pH. Для замера эффективной вязкости используют прибор "Полимер РПЗ-1м". Результаты лабораторных исследований приведены в таблице N2 и на графике 1.

Для проверки промышленной применимости заявляемого способа проведены лабораторные исследования по изоляции образцов керна на установке по изучению проницаемости кернов (УИПК). В частности, при прокачке блокирующего раствора через образец керна с разрешающей пропускной способностью по воде 0,28 см3/с, нефти 0,31 см3/с, инвертно-мицеллярной дисперсии 0,11 см3/с фильтрация при перепаде давления 20; 40; 65 кгс/см2 отсутствовала. При репрессии на керн 80кгс/см3 в течение одной минуты фильтрация составила 0,016 см3 (1 капля за 3 минуты). При исследовании проницаемости на обратном ходе с перепадом давления 20 кгс/см2 фильтрация по нефти составила 0,29 см3/с, по воде 0,16 см3/с, а через 30 минут фильтрация по нефти восстановилась до первоначальной.

Предлагаемый способ изоляции зон поглощения скважин испытан на скважинах NN 10142; 762; 764 Уренгойского ГКМ, в результате чего они отремонтированы и находятся в работе. Успешность работ составила 100%.

Из приведенных в таблице 1 и на графике чертежа данных видно, что заявляемый способ блокировки зон поглощения является более эффективным по сравнению с известными аналогами, что позволяет использовать его для глушения скважин в сложных геолого-технических условиях месторождений Крайнего Севера.

Технологическая схема временной блокировки газовых и газоконденсатных скважин состоит из следующих операций: закачка некоторого количества водометанольного раствора для оттеснения газа из ствола скважины; закачка расчетного количества блокирующего раствора (5-10 м3) в зависимости от конструкции скважины. Такая технологическая операция осуществляется путем обвязки двух ЦА-320 через тройник к скважине и одновременного закачивания составов N1 и N2 в соотношении 1:1, смешивание которых начинается в тройнике и в дальнейшем продолжается непосредственно в насосно-компрессорных трубах (НКТ), а увеличение технологических параметров по мере продвижения от устья к забою скважины и интервалу перфорации; заполнение ствола скважины эмульсионным раствором, нефтью и т.д.

Наряду с легкостью реализации предлагаемый способ изоляции зон поглощения отличается малой глубиной проникновения блокирующего раствора и его фильтратов. Механизм блокировки зон поглощения раствором заключается в образовании непроницаемого слоя из несвязанных между собой разнодисперсных частиц на внутренней поверхности ствола скважины, который заполняет перфорационные отверстия, кавернозные каналы и останавливается на поверхности породы, предотвращая тем самым проникновение фильтрата в проницаемый коллектор. Таким образом, создается непроницаемый слой, предохраняющий загрязнение коллектора и создающий условия для качественного ремонта скважин при высоких репрессиях на пласт.

Необходимо отметить, что понижение концентрации компонентов (нижний предел) приводит к снижению технологических параметров раствора (фильтрация 3,5-4 см3/30 мин., условная вязкость 350-400 с, эффективная вязкость 0,07-0,08 Па•с). При повышении концентрации компонентов вышеуказанных значений (верхний предел) блокирующий раствор становится технологически непригодным из-за трудностей, возникающих при продавке его в интервал перфорации.

Примечание:
Так как шлам имеет переменный состав и соответствует ТУ 38.302-03-3-90, то имеются допустимые отклонения технологических параметров от вышеназванных результатов, которые устраняют введением дополнительного количества (0,5-1%) химически осажденного мела.

Список использованной литературы:
1. Способ глушения скважин, авторское свидетельство N 1146308, C 09 K 7/06, 1992 г.

2. Способ ликвидации межколонных газопроявлений, патент N 1171507, E 21 B 33/138, 1992 г. (прототип).

Похожие патенты RU2139410C1

название год авторы номер документа
СПОСОБ ЛИКВИДАЦИИ МЕЖКОЛОННЫХ ГАЗОПРОЯВЛЕНИЙ В СКВАЖИНЕ 1999
  • Дудов А.Н.
  • Ахметов А.А.
  • Шарипов А.М.
  • Хадиев Д.Н.
  • Киряков Г.А.
  • Жуковский К.А.
RU2144130C1
СПОСОБ БЛОКИРОВКИ ПОГЛОЩАЮЩИХ ПЛАСТОВ В СКВАЖИНЕ 1999
  • Дудов А.Н.
  • Ахметов А.А.
  • Шарипов А.М.
  • Киряков Г.А.
  • Хадиев Д.Н.
  • Жуковский К.А.
RU2144608C1
СОСТАВ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА 1991
  • Поп Г.С.
  • Сидоренко В.М.
  • Сливнев В.Л.
RU2018642C1
Способ ликвидации межколонных газопроявлений в скважине 1990
  • Поп Григорий Степанович
  • Свечников Александр Михайлович
  • Барсуков Константин Александрович
  • Ахметов Азат Ахметович
  • Хозяинов Владимир Николаевич
  • Коршунов Николай Петрович
SU1771507A3
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 1996
  • Фомичев В.А.
  • Динков А.В.
  • Сюзов О.Б.
  • Кудрявцев Н.А.
  • Ланчаков Г.А.
  • Нитипин Л.Д.
RU2110678C1
Состав для гидроразрыва пласта 1991
  • Поп Григорий Степанович
  • Сидоренко Владимир Михайлович
  • Ланчаков Григорий Александрович
  • Барсуков Константин Александрович
  • Ахметов Азат Ахметович
  • Исмиханов Вадим Юрьевич
SU1794082A3
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОКОНДЕНСАТНОЙ СКВАЖИНЫ 1997
  • Дурицкий Н.Н.
  • Кучеров Г.Г.
RU2120541C1
СПОСОБ УСТАНОВКИ ЦЕМЕНТНОГО МОСТА В СКВАЖИНЕ 1999
  • Кульков А.Н.
  • Ахметов А.А.
  • Шарипов А.М.
  • Киряков Г.А.
  • Хадиев Д.Н.
  • Жуковский К.А.
RU2146756C1
Способ глушения скважины 1988
  • Поп Григорий Степанович
  • Барсуков Константин Александрович
  • Коршунов Николай Петрович
  • Хозяинов Владимир Николаевич
  • Заворыкин Анатолий Григорьевич
SU1629501A1
СПОСОБ СОЗДАНИЯ СКВАЖИННОГО ГРАВИЙНОГО ФИЛЬТРА 1999
  • Ланчаков Г.А.
  • Ахметов А.А.
  • Хадиев Д.Н.
  • Киряков Г.А.
  • Жуковский К.А.
RU2146759C1

Иллюстрации к изобретению RU 2 139 410 C1

Реферат патента 1999 года СПОСОБ ИЗОЛЯЦИИ ЗОН ПОГЛОЩЕНИЯ В СКВАЖИНАХ

Способ относится к газодобывающей промышленности, в частности к изоляции зон поглощения в скважинах на период проведения капитального и подземного ремонта, а также при вводе скважин в эксплуатацию после бурения. Техническим результатом является повышение эффективности блокировки зон поглощения путем увеличения эффективной вязкости, структурно-механических свойств, тиксотропной структуры и устойчивости закачиваемой смеси, особенно в скважинах с высокой степенью кавернозности продуктивного коллектора и аномально-низкими пластовыми давлениями (АНПД). В способе изоляции зон поглощения в скважинах, включающем закачку блокирующего состава и продавочной жидкости, одновременно закачивают не менее двух составов, образующих в процессе смешения и продвижения в стволе скважины неньютоновскую высоковязкую дисперсную систему, например состав N 1, мас.%: шлам от производства сульфонатных присадок к смазочным маслам или присадки на его основе 45-48, синтетические жирные кислоты 1-1,5; стабильный конденсат 1-4; пересыщенный водный раствор хлористого кальция с плотностью 1300-1460 г/см3 - остальное до 100%; состав N 2, мас.%: гидроксид натрия 5-9%; сульфат натрия 3-5%; карбоксилметилцеллюлоза (КМЦ) 0,7-1; карбонат натрия 6-9; химически осажденный мел 2-8, вода - остальное до 100. Причем составы готовятся отдельно и закачиваются в соотношении 1:1. 1 ил, 2 табл.

Формула изобретения RU 2 139 410 C1

Способ изоляции зон поглощения в скважинах, включающий закачку блокирующего состава и продавочной жидкости в зону поглощения скважины, отличающийся тем, что в зону поглощения одновременно закачивают не менее двух составов, образующих в процессе продвижения в стволе скважины неньютоновскую дисперсную систему, например:
состав N 1, мас.%:
Шлам от производства сульфонатных присадок к смазочным маслам или присадки на его основе - 45 - 48
Стабильный конденсат - 1 - 4
Синтетические жирные кислоты (СЖК) - 1 - 1,5
Пересыщенный раствор хлористого кальция с плотностью 1300 - 1460 кг/см3 - Остальное до 100
Состав N 2, мас.%:
Карбонат натрия - 6 - 9
Сульфат натрия - 3 - 5
Химически осажденный мел (ХОМ) - 2 - 8
Гидроксид натрия - 5 - 9
Карбоксиметилцеллюлоза (КМЦ) - 0,7 - 1
Вода - Остальное до 100
причем составы готовят отдельно и закачивают в скважину в соотношении 1: 1.

Документы, цитированные в отчете о поиске Патент 1999 года RU2139410C1

Способ ликвидации межколонных газопроявлений в скважине 1990
  • Поп Григорий Степанович
  • Свечников Александр Михайлович
  • Барсуков Константин Александрович
  • Ахметов Азат Ахметович
  • Хозяинов Владимир Николаевич
  • Коршунов Николай Петрович
SU1771507A3
Состав для изоляции зон поглощения 1985
  • Штефан Валентина Михайловна
  • Кузнецова Римма Николаевна
  • Шилова Татьяна Алексеевна
  • Кискин Виталий Ильич
  • Прохоров Леонид Иванович
  • Шиповский Вениамин Сергеевич
  • Барабан Николай Семенович
  • Пискун Василий Иванович
  • Московко Валерий Олегович
  • Курочкин Борис Михайлович
  • Драцкий Павел Николаевич
  • Шарко Петр Иванович
SU1303605A1
СПОСОБ ЛИКВИДАЦИИ ОТКРЫТЫХ ФОНТАНОВ В СКВАЖИНАХ ПРИ НАЛИЧИИ ПОГЛОЩАЮЩИХ ГОРИЗОНТОВ 0
SU234289A1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 1995
  • Горбунов Андрей Тимофеевич
RU2096584C1
СОСТАВ ДЛЯ ИЗОЛЯЦИИ ЗОН ПОГЛОЩЕНИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1993
  • Есипенко Алла Илларионовна
  • Сафин Станислав Газизович
  • Каюмов Леонид Хатипович
  • Петров Николай Александрович
RU2071547C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ 1996
  • Городилов В.А.
  • Шевченко В.Н.
  • Типикин С.И.
  • Макуров А.Д.
  • Макеев Г.А.
  • Фомичев В.Ф.
  • Юдаков А.Н.
RU2094591C1
US 5082057 A, 21.01.92
US 4361186 A, 30.11.82.

RU 2 139 410 C1

Авторы

Ахметов А.А.

Шарипов А.М.

Кульков А.Н.

Киряков Г.А.

Даты

1999-10-10Публикация

1998-05-18Подача