Изобретение относится к усовершенствованному устройству в капсульном генераторе, содержащем корпус генератора, размещенный в потоке воды, которая течет вдоль него и по направлению к турбине, причем устройство содержит средство для удаления избыточного тепла, генерируемого в процессе работы генератора, которое содержит элементы, собранные в виде проточных каналов для хладагента и/или нагретого генераторного воздуха для косвенного или непосредственного охлаждения генераторного воздуха.
В известном способе охлаждения капсульных генераторов используют водовоздушные теплообменники, установленные в корпусе генератора или в капсуле, причем воду подают снаружи через трубы внизу входной шахты генератора. Такое устройство часто сталкивается с проблемами из-за того, что требуются фильтры вследствие качества речной воды. Было предложено использовать стенку капсулы в качестве теплообменника для того, чтобы избежать указанных проблем. В таком устройстве стенка капсулы сделана двойной в конической детали носовой части, так что обеспечивается -водяной теплообменник ("охладитель с двойной стенкою"). Вода в промежуточном пространстве циркулирует с помощью насосов через обычные водовоздушные обменники. Даже если такая известная система может хорошо работать, ей мешают некоторые недостатки, особенно касающиеся дорогостоящих дополнительных расходов, включая значительные сварочные работы, дорогие материалы и т.д., причем тепловое сопротивление стенки капсулы является относительно большим. Требование необходимой охлаждающей поверхности будет, поэтому, влиять на размеры носовой детали капсулы или корпуса генератора.
Патент Норвегии N 155305 (СА Альстом-Атлантик) ссылается на погружной аппарат, заключенный в корпус, в котором наружное охлаждение происходит посредством охлаждающих труб, через которые циркулирует охлаждающий воздух, в котором охлаждающие трубы выполнены на наружной стороне корпуса генератора для того, чтобы сделать возможным охлаждение охлаждающего газа посредством воды, протекающей через водяной канал.
Патент США N 4524285 (Раух) ссылается на гидродинамическое устройство, содержащее первый трубообразный корпус, второй корпус, имеющий коническую переднюю часть, выполненную внутри первого корпуса и крепящую электрический генератор, а также третий корпус с конической частью напротив конической части второго корпуса. Через первый корпус вода течет вдоль внешней поверхности второго корпуса, приводит в движение турбину и способствует удалению тепла, генерируемого генератором.
Патент США N 5333680 (Зинхубер/Элин Энергифезоргунг ГмбХ) ссылается на охлаждающую систему для генератора, установленного в камере, которая окружена протекающей водой, причем стенки камеры изготовлены из листового металла и указанные стенки камеры в направлении потока воды выполнены в виде охлаждающего радиатора в виде двойной стенки ("охладитель с двухстенной рубашкой"), включающего каналообразные охлаждающие карманы, в которых вторичный охладитель может протекать и при соответствующем регулировании может использоваться для охлаждения генераторного воздуха.
Патент ЕР 0581841 (Райтингер/Элин Энергиферзоргунг ГмбХ) относится к капсульному генератору, имеющему отдельные охлаждаемые стационарные преобразующие элементы, находящиеся в носовой части корпуса турбины, и охлаждаемые непосредственно обтекающей водой.
Патент США N 3936681 ссылается на охлаждающий агрегат для электрического генератора, в котором применяется выпуклая передняя часть корпуса турбины, причем выпуклая внешняя стенка оснащена множеством коротких крюкообразных охлаждающих ребер. Назначение коротких крюкообразных охлаждающих ребер в том, чтобы облегчить подгонку к выпуклым (непрофильным) частям капсулы.
Следовательно, в соответствии с этими публикациями, речи не идет о предпочтительно "продольных" и "прямых" и двойных профильных экструдированных элементах, которые должны быть введены в качестве охлаждающих элементов в капсульный генератор, т. е. , в частности, делая возможным, чтобы внешние поверхности содержали внешние канавки, имеющие благоприятные характеристики для потока.
Патент Норвегии N 81871 относится к элементам в теплообменнике плитообразного типа, в котором предлагаются пластины, снабженные гофрировками, в частности, для того, чтобы придать жесткость плитам, причем указанные плиты содержат как <большие> гофрировки, так и <малые> гофрировки, идущие параллельно с большими, причем все они выполнены для образования внутреннего полого пространства, обеспечивающие определенные изменения скорости и изменения, связанные с потоком жидкости, протекающей между двумя этими плитами. Согласно этому патенту речь идет о предпочтительно гофрированных тонких плитах, изготовленных прессованием, которые вряд ли могут быть пригодны в конструкции капсульных турбин или генераторов.
Таким образом, ни одна из упомянутых публикаций не дает каких-либо указаний насчет использования экструдированных элементов, в частности, элементов из алюминия, которые были собраны, в соединении с капсульным генератором, давая объединенные внешние и внутренние характеристики потока и свойства теплообмена.
Целью настоящего изобретения является обеспечение конструкции типа, как указано выше, которая как в отношении стоимости, так и в отношении эксплуатации, демонстрирует значительные преимущества в сравнении с предшествующим уровнем техники.
Далее, целью настоящего изобретения является обеспечение устройства, в котором сварочные работы и применение дорогих материалов сводится к минимуму, в то время как обеспечивается устройство, имеющее благоприятные характеристики охлаждения и одновременно устраняются недостатки, относящиеся к использованию возможно загрязненной речной воды.
Данные цели достигаются посредством устройства в капсульном генераторе, содержащего корпус генератора с входной шахтой и основанием, расположенным в потоке воды с возможностью прохождения турбинной воды вдоль и по направлению к турбине, которое содержит средство для удаления избыточного тепла, сгенерированного в процессе работы генератора, содержащее элементы с проточными каналами для охладителя и/или нагретого генераторного воздуха для косвенного или прямого охлаждения, в котором согласно изобретению элементы в виде проточных каналов выполнены в виде экструдированных элементов, предпочтительно на обеих сторонах, которые выполнены, либо при сборке образуют внутренние каналы для циркулирующего охладителя, в частности для циркулирующего воздуха, либо любого другого соответствующего охладителя, причем внешняя поверхность экструдированных элементов выполнена обращенной к обтекающей турбинной воде.
Предпочтительно, чтобы экструдированные элементы были выполнены профильными по обеим их сторонам с внутренними каналами с внутренними выступами в форме охлаждающих ребер или радиаторных пластин, обеспечивающих большую теплопередающую поверхность, причем внешняя поверхность профильных элементов была выполнена с радиаторными пластинами или канавками, проходящими в направлении охлаждающего потока для благоприятного поверхностного контакта с потоком турбинной воды, текущей вдоль и вокруг них.
Целесообразно, чтобы экструдированные элементы были выполнены плитообразными с большими или меньшими пластинообразными выступами на их обеих сторонах, которые при сборке попарно образуют внутренние каналы с охлаждающими радиаторными пластинами для охладителя, в частности, очищенной воды, и образуют внешние охлаждающие поверхности с радиаторными пластинами навстречу обтекающей турбинной воде.
Желательно, чтобы экструдированные элементы были выполнены в виде продольных прямых и двойных профильных плитообразных элементов, образующих прямые элементы, формирующие звено структурной части.
Возможно, чтобы экструдированные элементы были выполнены в виде профильных элементов, образованных проходящими в направлении потока прямыми параллельными плитообразными частями, которые в набегающей части объединяются с закругленными частями плиты без профильности.
Полезно, чтобы экструдированные элементы с внешними и с внутренними профилями образовывали часть или по существу передний участок корпуса генератора, причем элементы формировали структуру, направляющую поток в теплообменник.
Предпочтительно, чтобы часть корпуса генератора, сформированная экструдированными элементами, была размещена вокруг входной шахты и/или вокруг нижнего пьедестала или основания.
Целесообразно, чтобы экструдированные элементы вокруг входной шахты и основания были размещены с возможностью пропускания без препятствий циркулирующего воздуха в корпусе генератора из одной периферийной стороны генератора и затем направления воздуха в содержащие эти элементы охлаждающие средства с возвращением охлажденного циркулирующего воздуха к центральной части генератора.
Предпочтительно, чтобы средство для удаления избыточного тепла, выполненное в виде базы или основания, было размещено симметрично относительно вводных шахт для оптимизации потока.
Целесообразно, чтобы устройство было выполнено с возможностью циркуляции охладителя, в частности, циркулирующего воздуха, с помощью заданного избыточного давления.
Возможно, чтобы средство для удаления избыточного тепла было выполнено в виде самоподдерживающейся структуры.
Полезно, чтобы экструдированные элементы в собранном состоянии образовывали индивидуальную проточную капсулу или несущее устройство для капсульного генератора, в частности, базу или основание, в обоих случаях соответствующим образом размещенные по отношению к генераторной воде и в соответствующей связи с капсульным генератором.
Дополнительные особенности и преимущества настоящего изобретения станут ясными из нижеследующего описания, рассматриваемого в связи с прилагаемыми чертежами, а также из прилагаемой формулы изобретения.
Фиг. 1 представляет схематичное поперечное сечение турбогенератора капсульного типа, использующего ранее известную технологию охлаждения.
Фиг. 2 - вид в изометрии передней носовой части корпуса генератора, имеющего по существу гладкую двойную закругленную поверхность в соответствии с известной технологией.
Фиг. 3 - вид в изометрии, подобный фиг. 2, но в котором одна или больше деталей корпуса генератора представляют пример варианта осуществления устройства согласно изобретению.
Фиг. 4 - в увеличенном масштабе сечение корпуса генератора, показанного на фиг. 3.
Фиг. 5 - сечение, как его видно сверху, верхней части корпуса генератора, показанного на фиг. 3 и фиг. 4.
Фиг. 6 - вид в изометрии, подобный фиг. 2, но в котором специальная носовая часть включена в другой вариант осуществления устройства согласно изобретению.
Фиг. 7 - сечение носовой части, показанной на фиг.6.
Фиг. 8 - частичный вид спереди и частично сечение, взятое по линии А-А на фиг. 7.
Фиг. 9 - сечение, взятое по линии B-B на фиг. 7.
Фиг. 10 - вид в изометрии, подобный фиг. 2, но в котором носовая часть выполнена в виде еще одного варианта осуществления устройства согласно настоящему изобретению.
Фиг. 11 - в увеличенном масштабе сечение варианта осуществления экструдированного профиля, который соответствующим образом может быть введен в устройство согласно изобретению.
Фиг. 12 - вид с торца, в котором множество профилей согласно фиг. 11 собраны с внутренними циркуляционными каналами, включающими охлаждающие ребра, выступающие внутрь, причем циркуляционные каналы образуют внешние радиаторные пластины и канавки.
Фиг. 13 - вид спереди, с частичным сечением, варианта осуществления устройства согласно изобретению, в частности, в котором устройство составляет или является деталью одного или больше несущих устройств для корпуса генератора.
Фиг. 14 и фиг. 15 - сечения в увеличенном масштабе, взятые по линии A-A и линии B-B на фиг. 13, соответственно.
Фиг. 16 - в несколько увеличенном масштабе сечение основных деталей, включенных в вариант осуществления изобретения, проиллюстрированный на фиг. 13, 14 и 15.
Фиг. 17 - сечение варианта осуществления изобретения экструдированного профиля, который соответствующим образом может быть включен в устройство по фиг. 14-16.
Фиг. 18 - вид с торца, в котором множество профилей согласно фиг. 17 собраны с внутренними циркуляционными каналами, включая охлаждающие ребра, выступающие внутрь, причем циркуляционные каналы образуют внешние радиаторные пластины и канавки.
На фиг. 1, которая иллюстрирует схематичное сечение гидрогенератора капсульного типа, G, капсула или корпус генератора обозначена ссылочным номером 1, причем корпус генератора 1 составляет главный элемент гидрогенератора, который помещен в турбинную трубу 2, через которую речная вода 3 или подобная вода течет вдоль и по направлению к турбине 4, расположенной вниз по ходу относительно корпуса генератора 1.
Гидрогенератор G, проиллюстрированный на фиг. 1, использует обычную технологию для охлаждения гидрогенератора, причем гидрогенератор содержит водовоздушные теплообменники 5, размещенные внизу в капсуле, причем вода подается снаружи по трубам 6 через входную шахту 7 генератора. Сама охлаждающая вода забирается из речной воды, которая часто требует наличия фильтров из-за качества речной воды, которая, в свою очередь, делает установку речного генератора более дорогой и сложной.
На фиг. 2 проиллюстрирован в изометрии вид передней носовой части 10А корпуса генератора 10, имеющей по существу гладкую двойную изогнутую поверхность, которая выполнена двойной, тем самым обеспечивая водо-водяной теплообменник ("охладитель с двойной рубашкой"). Здесь вода в промежуточном пространстве может циркулировать посредством насосов через обычные водовоздушные теплообменники, например, такого типа, как рассмотренные в связи с фиг. 1. Такие двойные изогнутые поверхности до сих пор делались из стали, и поверхности выполнялись сваркой двойных изогнутых сферических элементов, что предполагает существенные сварочные работы. Сверху корпус генератора 10 снабжен входной шахтой 17 и внизу основанием 18.
На фиг. 3, 4 и 5 показаны детали варианта осуществления устройства согласно изобретению, в котором охладитель, в частности, охлаждающий воздух, пропускается через средство, дающее прямой теплообмен с турбинной водой, протекающей вокруг.
На фиг. 3 проиллюстрирован в изометрии корпус генератора 110, имеющий существенно ту же конструкцию, что и носовая часть 10A по фиг. 2, но в котором вокруг верхней входной шахты 117 и пьедестала или основания 118 имеется средство, функционирующее и как направляющая структура для внешнего потока, и как внутренний теплообменник.
Другими словами, вокруг верхней входной шахты 117 было введено охлаждающее средство 110а и 110b, соответственно, которое само содержит элементы, в частности, элементы 111, которые либо могут содержать каналы, либо при сборке образуют каналы 112а и 112b, соответственно, для циркуляции охладителя, в частности, охлаждающего воздуха, или любого другого соответствующего охладителя, например, элементы типа, проиллюстрированного на фиг. 11 и 12, на которых также показано, как такие каналы 112а, 112b содержат внутренние выступы в форме охлаждающих ребер или радиаторных пластин 113, обеспечивая большую поверхность теплопередачи.
Далее, из фиг. 3 видно, что охлаждающее средство 110а и 110b выполнено так, что образует направленные наружу внешние радиаторные пластины и канавки 115, проходящие в направлении потока для благоприятного поверхностного контакта с турбинной водой, текущей вдоль и вокруг, как также показано в деталях на фиг. 11 и 12.
Далее, из фиг. 4 и 5 ясно, что элементы, которые включены в охлаждающее средство 110а и 110b вокруг входной шахты 117 и основания 118, соответственно, могут позволить охлаждающему воздуху беспрепятственно циркулировать у одной периферийной стороны генератора 140 и затем возвращаться в каналы 112а охлаждающего средства, содержащего элементы 110а и 110b, соответственно, откуда охлажденный воздух, см. стрелки D и E, может возвращаться к центральной части генератора.
Так как профильные элементы, включенные в соответствующее средство 110a и 110b, предпочтительно, составлены из частей прямых параллельных плит, проходящих в направлении потока, которые навстречу течению объединяются в закругленные части плит 141' и 142', соответственно, получается картина потока, которая в значительной степени может быть сравнена с картиной потока, которая проиллюстрирована на фиг. 2, в которой используются обычные конструктивные способы.
Должно быть понятно, что материал, из которого сделаны охлаждающие средства 110а и 110b должен иметь благоприятные характеристики в отношении теплопроводности, а также благоприятную стойкость к коррозии, в то время как сам материал может быть изготовлен простым способом с помощью экструзии, например, алюминия, пластмассы или соответствующих сплавов или смеси других материалов.
На фиг. 6-9 показаны детали в связи с другим вариантом осуществления устройства согласно изобретению, в котором охладитель, в частности, циркулирующий воздух и/или подшипниковая смазка, могут быть пропущены через средство, которое обеспечивает прямой теплообмен с турбинной водой, протекающей вокруг.
В варианте осуществления изобретения по фиг. 6-9 указанное средство, обеспечивающее прямой теплообмен с турбинной водой, протекающей вокруг, может составлять по существу всю переднюю часть корпуса генератора, причем указанное средство функционирует и как структура, направляющая поток, и как теплообменник.
Должно быть понятно, что указанное средство может быть выражено либо в виде самоподдерживающейся структуры, либо указанное средство может быть собрано с внешними поддерживающими средствами, например, основаниями и/или входными шахтами.
На фиг. 6 в изометрии показан корпус гидрогенератора 210, имеющего носовую часть 210А, которая включается в вариант осуществления устройства согласно изобретению, причем носовая часть выполнена из экструдированных элементов, в частности, из алюминиевых профилей, как в варианте осуществления на фиг. 11 и 12, но здесь обозначенных 211.
На фиг. 6-9, которые показывают носовую часть 210А, составляющую другой вариант осуществления устройства согласно изобретению, в частности, на фиг. 9, видно, как циркулирующий воздух в виде стрелок 216 направляется через внутренние каналы 212 от различных деталей генератора 217 и через вентиляторы 216 обратно в машинное помещение 219.
Должно быть понятным, что циркулируемый воздух 216 может быть использован для прямого охлаждения деталей генератора 217 и что циркулируемый воздух может работать как охладитель для охлаждения подшипниковой смазки.
Как специально показано на фиг. 6 и фиг. 9, носовая часть 210А генератора может быть выполнена с клинообразной структурой, подобной прямому носу корабля, но должно быть понятно, что клинообразная структура также может быть изогнутой или с изломом в форме двух или больше прямых поверхностей на каждой стороне, чтобы этим обеспечить соответствующее направление потока речной воды.
На фиг. 10 показан еще один вариант осуществления изобретения, в котором показан гидрогенератор 310, имеющий носовую часть 310А, содержащую экструдированные элементы 311, размещенные на расстоянии друг от друга вокруг носовой части 310А. Здесь также элементы 311 выполнены в виде прямых элементов в направлении потока, которые соответствующим образом объединяются с изогнутой передней носовой частью 310В и далее с закругленными частями 310С между элементами 311. Кроме того, здесь элементы могут быть выполнены так, как это рассмотрено в связи с фиг. 11 и 12.
Так же, как и было описано выше, на фиг. 11 и 12, показан пример одиночного профиля 111 и двойного профиля 111a, 111b, причем два элемента 111a, 111b являются типом, показанным на фиг. 12 и собранным так, чтобы образовать внутренние циркуляционные каналы 112 или 112а, 112b для циркулирующего воздуха, в то время как охлаждающие ребра 113 выступают внутрь каналов, и в то время как циркуляционные каналы 112 образуют внешние радиаторные пластины 114 с канавками или углублениями 115, предусмотренными между ними. Внутренние охлаждающие ребра 113, как рассмотрено выше, обеспечивают значительную теплопроводящую поверхность, и чередующиеся внешние радиаторные пластины 114 и впадины 115 обеспечивают значительную контактную поверхность с речной водой, протекающей вокруг.
Должно быть понятно, что устройство согласно изобретению может содержать охлаждающее средство, соответствующим образом выполненное в виде по существу экструдированных элементов, которые в собранном состоянии образуют индивидуальную проточную капсулу или образуют несущее устройство для капсульного генератора, в частности, в качестве базы или основания, в обоих случаях помещенных в поток воды снаружи капсулы, и в то же время находящиеся в соответствующей связи с капсульным генератором с его охладителем, в частности, с очищенной охлаждающей водой или с любым другим соответствующим охладителем.
На фиг. 13-15 показан вариант осуществления устройства согласно изобретению, в котором устройство составляет часть верхнего несущего устройства 410а и нижнего несущего устройства 410b для корпуса генератора 410, содержащего экструдированные элементы 411.
Фиг. 16 показывает в увеличенном масштабе сечение главных элементов, включенных в вариант осуществления изобретения, показанный на фигурах 13, 14 и 15.
Фиг. 17 представляет сечение варианта осуществления экструдированного профиля, который может быть включен в устройство, согласно фиг. 13-15.
Фиг. 18 показывает вид с торца, в котором множество профилей согласно фиг. 17 были собраны с внутренними циркуляционными каналами, имеющими ребра охлаждения, выступающие внутрь, причем циркуляционные каналы образуют внешние радиаторные пластины и канавки.
Кроме того, здесь охлаждающее средство 410а, 410b выполнено из экструдированных элементов, причем элементы 411 на одной стороне содержат охлаждающие ребра 413 и на другой стороне содержат охлаждающие радиаторные пластины 414. При сборке множества таких элементов 411 эти элементы, собранные попарно, образуют внутренние каналы 412, имеющие набор внутренних охлаждающих радиаторных пластин 413 для охладителя, в частности, очищенной воды, в то время как собранные каналы 412 снаружи образуют радиаторные пластинообразные охлаждающие поверхности 414 в форме канавок 415, снабженных ребрами, обращенными к обтекающей турбинной воде.
В дополнение к выступающим "внутренним" охлаждающим ребрам 413 на заданных расстояниях выполнены комбинированные разделительные и поддерживающие ребра 420, которые, при осевом повороте элементов на 180 градусов относительно друг друга, обеспечивают пары самоподдерживающих каналообразных элементов, которые обеспечивают легкость последующих сварочных работ.
название | год | авторы | номер документа |
---|---|---|---|
ОХЛАЖДЕНИЕ ВЫСОКОВОЛЬТНЫХ УСТРОЙСТВ | 2008 |
|
RU2465668C2 |
СИСТЕМЫ ВОСПОЛНЕНИЯ ЭНЕРГИИ И СИСТЕМЫ ПОДОГРЕВА ГАЗОВЫХ ТУРБИН, А ТАКЖЕ СПОСОБЫ ИХ ИЗГОТОВЛЕНИЯ И ИСПОЛЬЗОВАНИЯ | 2013 |
|
RU2694600C2 |
ГИДРОАГРЕГАТ | 1992 |
|
RU2046512C1 |
СИСТЕМА ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С НАДДУВОМ | 2009 |
|
RU2454554C1 |
УСТРОЙСТВО ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С НАДДУВОМ | 2009 |
|
RU2449136C1 |
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ РЕЦИРКУЛИРУЮЩИХ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2010 |
|
RU2478820C1 |
СИСТЕМА ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С НАДДУВОМ | 2009 |
|
RU2449137C1 |
КОМБИНИРОВАННАЯ СИСТЕМА ОХЛАЖДЕНИЯ ЭЛЕМЕНТОВ СЕРВЕРНОЙ СТОЙКИ (ВАРИАНТЫ) | 2017 |
|
RU2638414C1 |
ВИНТОРУЛЕВАЯ КОЛОНКА СУДНА | 2015 |
|
RU2651435C1 |
ТЕПЛООБМЕННИК ДЛЯ ТЯГОВОГО ПРЕОБРАЗОВАТЕЛЯ | 2013 |
|
RU2626041C2 |
Капсюльный генератор содержит корпус, расположенный в потоке воды с возможностью прохождения турбинной воды вдоль и по направлению к турбине, средство для удаления избыточного тепла, генерируемого в процессе работы генератора, выполненное в виде элементов, в виде проточных каналов для охладителя и/или нагретого генераторного воздуха. Технический результат заключается в независимости охлаждающей системы от качества речной или турбинной воды и содержании элементов, не являющихся дорогими в изготовлении и сборке. Средство содержит известные экструдированные элементы, которые либо содержат каналы, либо при сборке образуют каналы для циркулирующего охладителя, в частности циркулирующего воздуха, или любого другого соответствующего охладителя. Внешняя поверхность экструдированных элементов обращена к обтекающей турбинной воде. 11 з.п.ф-лы, 18 ил.
Приоритет по пунктам:
05.09.95 по пп.1 - 4, 6 - 7, 9 - 12;
08.02.96 по пп.5 и 8.
US 5101128 A1, 31.03.1992 | |||
Автоматический огнетушитель | 0 |
|
SU92A1 |
Погружной электродвигатель | 1987 |
|
SU1492419A1 |
Авторы
Даты
2000-11-20—Публикация
1996-08-29—Подача