СПОСОБ БЕСПРОВОЛОЧНОЙ ПЕРЕДАЧИ НА РАССТОЯНИЕ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА И ЭНЕРГИИ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА В ГАЗООБРАЗНЫХ И КОНДЕНСИРОВАННЫХ СРЕДАХ Российский патент 2001 года по МПК H04B7/22 

Описание патента на изобретение RU2161864C2

Изобретение относится к высокоэффективному способу беспроволочной передачи электрического заряда и энергии электрического заряда и может найти применение для передачи энергии на большие расстояния и для создания лучевого оружия.

Широко известен способ переноса электрического заряда (энергии) с помощью электрического разряда, возникающего под воздействием напряженности электрического поля между источником заряда и его приемником (дуговой разряд, см. , например, [1]). Обстоятельством, ограничивающим применение этого способа при передаче электрического заряда и при создании, например, лучевого оружия, является то, что и через источник и через приемник проходит заряд одинаковой мощности, что в случае оружия - одинаковой разрушительной силы. Таким образом, использование известного способа ограничено как по величине переносимого электрического заряда (энергии), так и по расстоянию.

Возможен способ переноса энергии лазерным излучением, однако он малоэффективен из-за низкого КПД лазеров и их на настоящий момент малых энергетических возможностей как источников энергии (см., например, [2], с. 3765-3766).

Известен способ переноса электрического заряда (энергии) за счет осуществления в разрядном устройстве стекания (утечки) заряда с электрода в окружающую среду путем создания соответствующего значения напряженности электрического поля в области стекания (утечки) заряда, как, например, в трансформаторе Тесла [3, с. 337-339]. Однако перенос заряда (энергии) в этом случае возможен на очень небольшие расстояния (единицы сантиметров).

Авторами изобретения расчетно и экспериментально обоснована возможность передачи электрического заряда (энергии) любой величины на практически неограниченные расстояния с высокой эффективностью.

Для достижения этого заявляется способ беспроволочной передачи на расстояние электрического заряда и энергии электрического заряда в газообразных и конденсированных средах от разрядного или накопительного устройства к приемному устройству, включающий процесс стекания (утечки) заряда с разрядного (накопительного) устройства в окружающую среду, обеспечиваемый созданием порогового для данной среды значения напряженности электрического поля в области стекания (утечки) заряда, отличающийся тем, что процесс стекания заряда с разрядного (накопительного) устройства и его передачу к приемному устройству осуществляют снижением величины порогового значения напряженности электрического поля путем создания плазменного электропроводящего канала от области стекания заряда до приемного устройства поджигающим лазерным лучом, при этом время включения лазерного луча и стекания заряда обеспечивают меньшим времени рекомбинационных процессов в плазменном электропроводящем канале. В случае применения способа при создании лучевого оружия электрический потенциал приемного устройства обеспечивают равным электрическому потенциалу окружающей среды.

Заявляемая совокупность новых признаков позволяет, используя лазерный луч малой мощности, увеличить КПД и расстояние передачи электрического заряда (энергии) принципиально до неограниченной величины.

Разрядное (накопительное) устройство может работать как в импульсном, так и в стационарном режиме.

На приводимых ниже фиг. 1 и фиг. 2 изображена схема эксперимента, подтверждающего возможность достижения высокого КПД передачи электрического заряда и его энергии при осуществлении способа.

На фиг. 3 приведена схема применения способа при передаче заряда (энергии) на расстояние, на фиг. 4 - в лучевом оружии.

Пример осуществления способа приведен для газовой среды (атмосферы).

Для оценки эффективности способа необходимо оценить полную энергию лазерного луча (минимальную) и переносимую с его помощью величину заряда (энергию).

Оценим сначала величину интенсивности лазерного излучения, необходимую для образования электропроводящего плазменного (ионизованного) канала.

Согласно [4, с. 333; 5, c. 208] плотность энергии электромагнитного поля E, определяемая ее электрической составляющей, выражается соотношением
(1)
где εa - - абсолютная диэлектрическая проницаемость среды; E - значение напряженности электрического поля, при котором происходит пробой среды; для атмосферы εa ≈ 8,85·10-12 Ф·м-1, E ≈ 3,5 ·106 B·м-1 [6, с. 443-444]. При этом, в первом приближении, принимаем, что напряженность E не зависит от частоты электромагнитного поля [6, с.443-444]. Подставляя выбранные значения параметров в (1) получим
. (2)
Основанием использования соотношения (1) для численной оценки E является свойство лазерного излучения: лазерное излучение является поляризованным излучением.

Рассмотрим "точечный" объем Vл лазерного луча, имеющего поперечное сечение Sл ≈ 1 мм2 ≡ 10-6 м2, а "точечную" длину Δl лазерного луча, ответственную за напряженность электрического поля E ≈ 3,5·106 B ·м-1, принимаем равной Δl = 1 мм ≡ 10-3м. Тогда в объеме лазерного луча Vл= = 109 м3 на длине Δl = 1 мм должна быть заключена энергия
Eлуд = E·Vл = 54 Дж·м-3 ·10-9 м 3 = 5,4·10-8 Дж. (3)
При значениях емкости накопителя заряда Cн ≈ 10-8Ф и сопротивлении разменного проводящего канала R ≈ 60 Ом (это параметры стандартных приборов [1, с.53]) характерное время стекания (утечки) заряда с накопителя составит величину τу~ RCн~ 0,6·10-6 c, что сравнимо или меньше характерного времени рекомбинации [7, с.71]. В соответствии с данными, приводимыми для разрядов молний [4, с. 440] , примем характерную скорость распространения заряда по каналу проводимости vз равной vз ≈ 109-1010см·с-1. Таким образом, за время τy~ RCН~ = 0,6·10-6 с, заряд должен пройти расстояние L вдоль проводящего канала длиной L = τy·vз≈ 0,6·10-6 с x5·107 м·с-1 = 30 м. Это означает, что объем проводящего канала V, создаваемого лазерным лучом, должен составлять около V = Sл·L = 10-6м2·30 м = 3·10-5 м3. Полная энергия лазерного луча, необходимая для создания проводящего канала для передачи всего заряда составит

Если лазер функционирует в импульсном режиме и длительность импульса τл ≈ τy =0,6·10-6с, то мощность лазерного луча должна составлять
(5)
Оценим эффективность предлагаемого способа по передаче заряда и его энергии, приняв напряжение разрядного (накопительного) устройства равным U ≈ 104 В. В этом случае энергия передаваемого заряда составит
E3 = Cн·U2/2 ≈ 10-8 · 108 Ф·B2 ≈ 1 Дж. (6)
где Cн = 10-8 Ф (см. выше).

Учитывая, что КПД "поджигающего" лазера составляет η ≈ 1-2%, в соответствии с (3) и (5) видим, что
(Eпл

олн/η) ≪ Eз, (7)
т. е. КПД всего комплекса по передаче заряда и его энергии к удаленному объекту в нашем примере составляет около 80% процентов. При оптимизации параметров каждого из компонентов комплекса КПД такого комплекса может приближаться к 100%.

Наиболее эффективный режим работы "поджигающего" лазера - импульсный, т. к. после образования электропроводящего канала в окружающей среде его электропроводимость будет поддерживаться самостоятельно энергией передаваемого заряда за счет разности потенциалов передающего и приемного устройств.

Возможности реализации очень высокого КПД передачи заряда и энергии заряда по предлагаемому способу проверялась экспериментально следующим образом. Пучок электронов (фиг. 1) из электронопровода 1 ускорителя электронов падал на пластину 2, изготовленную из оптического стекла. Энергия электронов в электронном пучке - E0 = 27 МэВ. Режим импульсный. Длительность импульсов электронного пучка τе- = (1-2)·10-6 с. Частота следования импульсов электронов f = 200 Гц. После облучения пучком электронов стеклянной пластины 2 в течение Δτе-= 1-2 мин в области падения электронного пучка на пластине 2 образовывалось сильно окрашенное темно-коричневое пятно 3 диаметром D ≈ 25 мм. Сразу же после прекращения облучения электронным пучком пластины 2 в область окрашивания 3 направляли луч лазера и выполняли фотоотжиг [8] этой области пластины в течение Δtл, равного времени облучения пластины электронным пучком, т.е. Δtл = Δtе-.
В области прохождения лазерного луча через пластину 2 на фоне сильно окрашенного пятна 3 происходило практически полное просветление области 4 диаметром d, равном, примерно, диаметру лазерного луча, т.е. d ≈ 0,8 мм.

Затем пластину сдвигали необлученным участком в область падения электронного пучка и эксперимент повторяли (см. фиг. 2). Однако теперь фотоотжиг лазерным лучом 5 выполняли одновременно с облучением пластины 2 электронным пучком, выходящим из электронопровода 1, Мощность электронного пучка и время облучения пластины Δtе- выдерживались теми же, что и в предыдущем эксперименте.

Описанные эксперименты с последовательным облучением пластины 2 электронным пучком и лазерным лучом (фиг. 1) и одновременное облучение пластины 2 электронным пучком и лазерным лучом (фиг. 2) были выполнены многократно и в результате получены следующие устойчивые и однозначные результаты: при одновременном облучении пластины 2 электронным пучком и лазерным лучом пропускание (прозрачность) пластины в области пятна 4 (фиг. 2) каждый раз оказывалась в 2,5 - 3 раза хуже (меньше) в сравнении с пропусканием (прозрачностью), получаемом при последовательном облучении пластины 2 электронным пучком и лазерным лучом. Это означает, что в случае одновременного облучения пластины электронным пучком и лазерным лучом существенная доля электронов электронного пучка (по оценкам не менее 10%), пересекавших канал, характеризующий направление распространения лазерного луча вдоль оси A (см. фиг. 2), разворачивалась на длине канала "В" вдоль направления распространения лазерного луча и падала на пластину 2 в области пятна 4 дополнительно к электронам, распространяющимся в общем потоке электронного пучка в направлении падения на эту же область пятна 4. Учитывая релятивистскую скорость электронов электронного пучка, имеющих энергию E0 = 27 МэВ, и довольно незначительную интенсивность лазерного луча (примерно на три десятичных порядка меньше интенсивности, оцененной по выражениям (4) и (5)), следует считать полученный экспериментальный эффект весьма значительным.

Один из вариантов использования способа при передаче электроэнергии на большие расстояния показан на схеме фиг. 3. От непрерывно или периодически подзаряжаемого накопительного устройства 1 энергия передается к приемному устройству 2. Осуществляя с помощью лазерных лучей 8 (от лазеров 3 и 4) коммутацию электродов накопителя 1 и приемника 2 ("+" - "-" и "-" - "+" соответственно) реализуем упрощенный вариант устройства по передаче электроэнергии на расстояние.

Пример использования способа при создании лучевого оружия показан на схеме фиг. 4. Накопительное (или зарядное) устройство 1 заряжено одноименным зарядом и имеет относительно приемника и окружающей среды отрицательный потенциал. При включении лазера 2 с помощью лазерного луча получаем проводящий канал между накопительным (зарядным) устройством 1 и объектом (приемником) 3 и практически весь заряд, а точнее энергия заряда разрядного устройства 1 передается по лучу лазера к объекту 3. Разрушительная сила будет зависеть от энергии, законсервированной в зарядном устройстве, и от времени включения лазера 2.

Источники информации
1. Источник света импульсный (ИСИ-1). Техническое описание и инструкция по эксплуатации, 1979.

2. Alford W.J., Hays G.H. // J. Appl. Phys. 1989, v. 65, N 10, p.3760-3766.

3. Пипко А. И. , Плисковский В.Я., Пенчо Е.А. Оборудование для откачки вакуумных приборов. М.: Энергия, 1965.

4.Кухлинг X. Справочник по физике. М.: Мир, 1983.

5. Савельев И.В. Основы теоретической физики. T.1. М.: Наука, 1975.

6. Таблицы физических величин. Справочник. Под ред. академика И.К.Кикоина. М.: Атомиздат, 1976.

7. Арцимович Л.А. Элементарная физика плазмы. М.: Атомиздат, 1969.

8. Трыков О.А. Увеличение ресурса прозрачности твердотельных сцинтиллирующих и несцинтиллирующих сред, облучаемых интенсивными потоками гамма-квантов: Препринт ФЭИ - 2482, Обнинск, 1995.

Похожие патенты RU2161864C2

название год авторы номер документа
СПОСОБ БЕСПРОВОЛОЧНОЙ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Трыков О.А.
  • Корхалева Т.С.
  • Леонова О.О.
  • Соловьев Н.А.
  • Хачатурова Н.Г.
RU2241313C1
СПОСОБ ВОССТАНОВЛЕНИЯ ОПТИЧЕСКОЙ ПРОЗРАЧНОСТИ КОНДЕНСИРОВАННЫХ СРЕД 1995
RU2088989C1
СПОСОБ НЕЙТРАЛИЗАЦИИ ОБЪЕМНОГО ЗАРЯДА ИОННЫХ ПУЧКОВ В ИОННЫХ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2008
  • Юлдашев Эдуард Махмутович
RU2429591C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ (ВАРИАНТЫ) 2000
  • Стребков Д.С.
  • Авраменко С.В.
  • Некрасов А.И.
RU2183376C2
СПОСОБ ВОСПЛАМЕНЕНИЯ МЕТАТЕЛЬНОГО ЗАРЯДА В КАМОРЕ СТВОЛА АРТИЛЛЕРИЙСКОГО ОРУДИЯ С БЕЗГИЛЬЗОВЫМ ЗАРЯЖАНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Закаменных Георгий Иванович
  • Соловьев Владимир Евстропович
  • Беляев Владимир Анатольевич
  • Чернов Вадим Валентинович
  • Бродский Юрий Яковлевич
  • Голубев Сергей Владимирович
  • Ковалев Николай Федорович
  • Перминов Андрей Олегович
  • Шлепнев Сергей Петрович
RU2348004C2
СПОСОБ ЭФФЕКТИВНОГО ПРЕОБРАЗОВАНИЯ ЭЛЕКТРОЭНЕРГИИ В ЭНЕРГИЮ ПЛАЗМЫ 2008
  • Пресс Евгений Александрович
RU2397625C2
ЛАЗЕРНО-ПЛАЗМЕННЫЙ ГЕНЕРАТОР ИОНОВ С БОЛЬШИМ ЗАРЯДОМ 2013
  • Турчин Владимир Иванович
RU2538764C2
СПОСОБ РЕГУЛИРОВАНИЯ ИОННЫХ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2008
  • Юлдашев Эдуард Махмутович
RU2458490C2
СПОСОБ ИНИЦИИРОВАНИЯ ВЫСОКОВОЛЬТНЫХ РАЗРЯДОВ В АТМОСФЕРЕ 2012
  • Зворыкин Владимир Дмитриевич
  • Левченко Алексей Олегович
  • Сметанин Игорь Валентинович
  • Устиновский Николай Николаевич
RU2511721C1
СПОСОБ ПОЛУЧЕНИЯ КОРОТКОВОЛНОВОГО ИЗЛУЧЕНИЯ ИЗ ПЛАЗМЫ ВАКУУМНОГО РАЗРЯДА 2008
  • Борисов Владимир Михайлович
  • Виноходов Александр Юрьевич
  • Иванов Александр Сергеевич
  • Христофоров Олег Борисович
RU2365068C1

Иллюстрации к изобретению RU 2 161 864 C2

Реферат патента 2001 года СПОСОБ БЕСПРОВОЛОЧНОЙ ПЕРЕДАЧИ НА РАССТОЯНИЕ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА И ЭНЕРГИИ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА В ГАЗООБРАЗНЫХ И КОНДЕНСИРОВАННЫХ СРЕДАХ

Изобретение относится к технике связи. Технический результат состоит в повышении эффективности. КПД передачи составляет 10%. При передаче электрического заряда (энергии заряда) от источника заряда в виде накопительного или разрядного устройства, осуществляемого за счет создания пороговой для данной среды напряженности электрического поля, поджигающим лазерным лучом создают плазменный электропроводящий канал от области стекания до приемника. Стекание заряда обеспечивают за время, меньшее времени рекомбинационных процессов в плазменном электропроводящем канале. В частном случае применения способа электрический потенциал приемника заряда (энергии) обеспечивают равным электрическому потенциалу окружающей среды. Накопительное (разрядное) устройство может работать как в импульсном, так и в стационарном режимах. 4 ил.

Формула изобретения RU 2 161 864 C2

Способ беспроволочной передачи на расстояние энергии электрического заряда в газообразных и конденсированных средах от разрядного или накопительного устройства к приемному устройству, включающий процесс передачи энергии электрического заряда от разрядного или накопительного устройства к приемному устройству через разделяющую среду, обеспечиваемый созданием порогового для данной среды значения напряженности электрического поля в области передачи энергии электрического заряда, причем снижение величины порогового значения напряженности электрического поля на время передачи энергии электрического заряда осуществляют путем создания плазменного электропроводящего канала от разрядного или накопительного устройства к приемному устройству поджигающим лазерным лучом, отличающийся тем, что электрический потенциал приемного устройства обеспечивают равным электрическому потенциалу окружающей среды.

Документы, цитированные в отчете о поиске Патент 2001 года RU2161864C2

US 3719829, 06.03.1973
ПИПКО А.И., ПЛИСКОВСКИЙ В.Я., ПЕНЧО Е.А
Оборудование для откачки вакуумных приборов
- М.: Энергия, 1965 г., с.337-339
ТРЫКОВ О.А
Увеличение ресурса прозрачности твердотельных сцинтиллирующих и несцинтиллирующих сред, облучаемых интенсивными потоками гамма-квантов
- Препринт, ФЭИ 2482, 0бнинск, 1995
АРЦИМОВИЧ Л.А
Элементарная физика плазмы
- М.: Атомиздат, 1969 г., с.7.

RU 2 161 864 C2

Даты

2001-01-10Публикация

1996-11-12Подача