Изобретение относится к области канализации и преимущественно предназначается к использованию в сельском хозяйстве на животноводческих и птицеводческих фермах, в фермерских хозяйствах, индивидуальных усадьбах сельских жителей и на садово-огородных участках для приготовления высококачественных обеззараженных от патогенной микрофлоры, гельминтов, их яиц и семян сорняков органических удобрений и горючего биогаза из навоза, помета, фекалий, боенских отходов, различных растительных отходов, не пригодных к употреблению поврежденных плодов и корнеклубнеплодов.
Известны способ анаэробного сбраживания осадка сточных вод и осуществляющее его устройство в виде коаксиального метантенка по а.с. СССР N 552308, согласно которым сырой осадок вводят вовнутрь коаксиальной перегородки метантенка, являющейся центральной внутренней камерой анаэробного сбраживания, снабженной мешалкой. В основном сброженный во внутренней камере метантенка осадок выводится из под не доходящей до дна метантенка коаксиальной перегородки во внешнюю камеру, образуемую стенкой резервуара метантенка и коаксиальной перегородкой, где при завершении анаэробного досбраживания поступающая в нее из внутренней центральной камеры масса разделяется на отдельно удаляемые из нее иловую воду и уплотненный сброженный осадок. Выделяемый из сбраживаемой во внешней и внутренней камерах массы биогаз отводится из них через обособленные патрубки.
Недостатками известного способа и устройства его осуществления является то, что сбраживание осуществляют в центральной камере коаксиального метантенка, где вводимый в эту камеру свежий насыщенный органическими веществами сырой осадок смешивают со всей сбраживаемой массой, объединяя при этом разные фазы анаэробного сбраживания - гидролиза, ферментации, ацетатогенной и метаногенной фаз - воедино, усредняя фазные значения pH и смешивая преимущественные фазные симбиозы микроорганизмов, что замедляет процесс сбраживания и снижает производительность.
Приведенные недостатки известного способа не позволяет использовать его для анаэробного сбраживания разжиженных органических отходов сельскохозяйственного производства, насыщенных трудносбраживаемыми и легко всплываемыми растительными материалами.
Конструктивное выполнение известного по а.с. N 552308 метантенка с коаксиально закрепленный внутри его резервуара концентрической перегородкой имеет тот недостаток, что он не обеспечивает возможность осуществления пофазного анаэробного сбраживания органических отходов, а подающий сырой осадок трубопровод, установленный внутри центральной общей камеры сбраживания, исключает возможность осуществить пофазное сбраживание без конструктивных изменений метантенка.
Известны и другие способ анаэробного сбраживания разжиженных органических отходов и устройство для его осуществления по патенту РФ 2073401, согласно которым сбраживание разжиженных органических отходов осуществляют последовательно пофазно во внешней и внутренней камерах коаксиального метантенка с перемешиванием сбраживаемых отходов во внешней камере путем подачи в нее свежих разжиженных органических отходов, тогда как устройство для осуществления способа, содержащее резервуар, выполняемый различной формы в плане с коническими или пирамидальными днищем и куполом с прикрепленной к куполу не доходящей до днища концентрической перегородкой, образующей внутреннюю и внешнюю камеры с вводом в последнюю патрубка подвода разжиженных органических отходов. Отвод биогаза из внутренней и внешней камер производится через обособленные патрубки над обеими камерами.
Недостатком этого известного способа анаэробного сбраживания разжиженных органических отходов, выполняемого в устройстве для его осуществления, является то, что выводимые из внутренней и внешней камер через обособленные патрубки биогазы существенно отличаются друг от друга по своему составу и калорийности, что не позволяет рационально использовать отводимый из внешней камеры биогаз обособленно из-за малого содержания в его составе метана и повышенного содержания углекислоты с сероводородом, низкой калорийности, тогда как смешивание биогаза из обеих камер существенно снижает качество и калорийность смеси. Недостатком является и то, что перемешивание и подогрев сбраживаемой массы осуществляются порознь.
Вместе с тем по своей технической сущности и достигаемому результату известные по патенту РФ N 2073401 способ и устройство для его осуществления являются наиболее близкими к изобретению.
Задачей настоящего изобретения является создание такого способа и устройства для его осуществления, которое устраняло бы приведенные выше недостатки способа и устройства для его осуществления и обеспечило бы повышение эффективности анаэробного сбраживания, улучшение качества и калорийности биогаза.
Согласно изобретению поставленная задача в выполнении способа достигается тем, что способ последовательного пофазного анаэробного сбраживания разжиженных органических отходов, включающий подачу во внешнюю камеру метантенка разжиженных органических отходов с последующим их последовательным анаэробным сбраживанием во внешней и внутренней камерах метантенка, перемешивание и подогрев сбраживаемой массы, вывод из метантенка сброженного осадка и отбор биогаза из внешней и внутренней камер метантенка, выполняют так, что отводимый из внешней камеры метантенка биогаз смешивают в инжекторе со сбраживаемой в метантенке массой, которую до ввода ее в инжектор подогревают, а нагретую газожидкостную смесь вводят во внутреннюю камеру метантенка, тогда как введенную во внутреннюю камеру метантенка нагретую газожидкостную смесь распределяют по внутренней камере метантенка отдельными рассредоточенными потоками, предпочтительно размещенными у днища метантенка.
Достигается поставленная задача и новым конструктивным изготовлением устройства для осуществления приведенного выше нового способа последовательного пофазного анаэробного сбраживания разжиженных органических отходов сельского и коммунального хозяйства, содержащего изготавливаемый из различных материалов герметичный резервуар круглой, овальной, квадратной, прямоугольной или многоугольной формы в плане, конические или пирамидальные днище и купол с прикрепленной к куполу и не доходящей до дна резервуара цилиндрической или конической концентрической перегородкой, одинаковой в плане с формой резервуара и разделяющей его на внешнюю и внутреннюю камеры, патрубки подвода разжиженных органических отходов и отвода сброженного осадка, средство перемешивания и подогрева сбраживаемых отходов и патрубки отвода биогаза из внешней и внутренней камер, которое выполняют так, что патрубок отвода биогаза из внешней камеры метантенка соединен газопроводом с всасывающим патрубком инжектора, к напорному патрубку которого присоединен теплообменник, взаимодействующий с нагревателем и насосом, соединенным своим всасывающим патрубком с введенным в метантенк трубопроводом, а патрубок смесительной камеры инжектора соединен с напорным трубопроводом нагретой газожидкостной смеси, введенным в метантенк, где у его днища внутри метантенка соединен с установленным над днищем рассредоточителем потока. Решается поставленная задача и тем, что в качестве нагревателя установлен работающий на биогазе отопительный газовый аппарат с водяным контуром, снабженный автоматическим регулятором температуры нагрева воды.
Поставленная задача достигается и тем выполнением устройства, что всасывающий газопровод инжектора двумя параллельно обособленными газопроводами соединен с газопроводом отвода биогаза из патрубка внутренней камеры метантенка в газгольдер или в другой регулятор постоянного давления биоагаза во внутренней камере метантенка, в один из которых встроен редукционный клапан сброса избыточного давления биогаза из внешней камеры метантенка в газопровод отвода биогаза из внутренней его камеры, а во второй параллельно обособленный газопровод встроен редукционный клапан подачи биогаза из газопровода его отвода из внутренней камеры во внешнюю камеру метантенка при образовании в ней вакуума.
На чертежах схематично приведено устройство коаксиального метантенка, где на фиг. 1 показан его общий вид в разрезе с присоединенными к нему и встроенными в него газопроводами, редукционными клапанами, инжектором, насосом, теплообменником, нагревателем, трубопроводами и рассредоточителем потока, а на фиг. 2 показан вид по А-А на фиг. 1 при круглой форме выполнения резервуара метантенка в плане /при других формах выполнения резервуара метантенка в плане рассредоточитель потока нагретой газожидкостной смеси устанавливают в центральной части днища резервуара аналогично как и при круглой форме его выполнения с выполнением, что размер Б больше размера В/.
Коаксиальный метантенк /фиг. 1 и 2/ представляет собой герметичный /в данном выполнении - цилиндрический/ резервуар 1 с коническими днищем 2 и купольным покрытием 3 с газосборником 4, снизу под которым к нему присоединена не доходящая до днища 2 резервуара 1 концентрическая в виде усеченного конуса перегородка 5, одинаковая по своей форме в плане с формой резервуара 1 в плане и обращенная своим основанием Б к днищу 2. Концентрическая перегородка 5 разделяет резервуар 1 на внешнюю 6 и внутреннюю 7 камеры, в которых размещены патрубки подвода разжиженных отходов 8 и отвода сброженного осадка 9. Из разнонаправленного тройника на конце патрубка 8 обеспечивается перемешивание сбраживаемой массы во внешней камере 6 струйным напором подаваемых разжиженных отходов из тройника патрубка 8. Над внешней 6 и внутренней 7 камерами выполнены патрубки 10 и 11 отвода из них биогаза, тогда как патрубок 10 отвода биогаза из внешней камеры 6 метантенка соединен газопроводом 12 с всасывающим патрубком 13 инжектора 14, к напорному патрубку 15 которого присоединен теплообменник 16 с нагревателем 17 и насосом 18. Всасывающий патрубок 19 насоса 18 соединен с трубопроводом 20 забора сбраживаемой массы из метантенка, тогда как патрубок смесительной камеры 21 инжектора 14 соединен напорным трубопроводом 22 нагретой газожидкостной смеси с введенным в метантенк и к установленным над его днищем 2 рассредоточителем потока 23.
Для обеспечения широкого диапазона регулирования заданных величин избыточного давления биогаза и его вакуума во внешней камере 6 - всасывающий газопровод 12 инжектора 14 двумя обособленными параллельными газопроводами 24 и 26 соединен с газопроводом 28. При этом в газопровод 24 встроен редукционный клапан 25 сброса избыточного давления биогаза из внешней камеры 6 метантенка в газопровод 28 отвода биогаза из внутренней его камеры 7, а в газопровод 26 встроен редукционный клапан 27 подачи биогаза из газопровода 28 во внешнюю камеру 6 метантенка при образовании в ней вакуума.
В целях недопущения поступления биогаза из рассредоточителя потока нагретой газожидкостной смеси 23 во внешнюю камеру 6 размер внешнего его габарита В выполнен менее размера Б основания конической концентрической перегородки 5, что обеспечивает более полное использование тощего биогаза нагретой газожидкостной смеси метанообразующими микроорганизмами.
Другие трубопроводы /для контроля уровня и перелива и др./, как и устройство теплоизоляции метантенка, установка прибора КИПА - на чертежах не показаны, т. к. их выполнение возможно во многих вариантах. В соответствии с требованиями СНиП давление биоагаза во внутренней камере 7 метантенка устанавливается в пределах 1,5-2,5 кПа /150-250 мм вод. столба/.
Последовательное пофазное анаэробное сбраживание разжиженных органических отходов сельского и коммунального хозяйств в предложенном коаксиальном метантенке выполняют следующим образом.
Свежие разжиженные и предпочтительно предварительно измельченные органические отходы влажностью 93±4% по трубопроводу 8 под напором вводят в межстенную внешнюю камеру 6, где струями разнонаправленных из тройника патрубка 8 потоков вводимые отходы смешивают с содержимой в камере 6 сбраживаемой массой. Загрузка метантенка разжиженными органическими отходами может производиться как непрерывно постоянно, так и периодически циклично один или несколько раз в сутки. При загрузке метантенка менее плотные трудносбраживаемые целлюлоза, легнин, жир и белки, содержащие легкие включения, всплывают вверх, будучи до этого перемещены потоками струй с содержимым камеры 6 и обсеменены с активным симбиозом расщепляющих /гидролизующих/ микроорганизмов, обеспечивающих в первой фазе анаэробного сбраживания разрушение сложных соединений в более простые с образованием из них во второй фазе сбраживания более плотных кислот и аминокислот, имеющих pH менее 7,2 и опускающихся вниз по камере 6 в камеру 7, где pH более 7,2 и где последующие ацетогенную и метаногенную фазы анаэробного сбраживания завершают.
Образующийся в межстенной камере 6 малокалорийный биогаз выводят из нее по патрубку 10, а более калорийный биогаз, образующийся в камере 7, выводят из метантенка по патрубку 11.
Постоянное поступление нагретой газожидкостной смеси из рассредоточителя потока 23 у днища 2 камеры 7 обеспечивает одновременное совмещенное газожидкостное перемешивание при нагреве сбраживаемой массы с вливающимся в камеру 7 из камеры 6 более плотного потока кислот и аминокислот, раскисляемого восходящими рассредоточенными нагретыми газожидкостными потоками сбраживаемой массы в камере 7. Обильное поступление биогаза с газожидкостной смесью из рассредоточителя потока 23 совместно с биогазом, который вырабатывают метанообразующие микроорганизмы в камере 7, обеспечивает у основания газосборника 4 постоянно "кипящую" поверхность сбраживаемой в метантенке массы, препятствуя тем самым образованию плотной корки, тогда как при подъеме биогаза от днища 2 к основанию газосборника 4 осуществляется досбраживание легких частиц массы и поглощение из тощего биогаза из камеры 6 углекислоты и сероводорода на формирование симбиоза микроорганизмов, осуществляющих анаэробное сбраживание в метантенке. Совмещенное газожидкостное перемешивание сбраживаемой массы с ее одновременным подогревом до устанавливаемой автоматически температуры в одном потоке, что существенно упрощает и удешевляет эксплуатационное обслуживание метантенка, активизирует и ускоряет процесс анаэробного сбраживания с увеличением выхода биогаза и повышает % содержание в его составе метана при снижении углекислоты и сероводорода.
В зависимости от задаваемых режимов работы метантенка, обуславливаемых влажностью сбраживаемой массы, периодичностью и дозой загрузки отходов и их составом, температурой сбраживания и другими факторами, давление вырабатываемого в камере 6 биогаза изменяется, тогда как давление биогаза в камере 7 постоянно и регулируется газгольдером или другими устройствами в пределах норм СНиП. При работе насоса 18 сбраживаемая в камере 7 масса засасывается трубопроводом 20 и под давлением через теплообменник 16 подается в инжектор 14, который через газопровод 12 и патрубок 10 засасывает биогаз из камеры 6. Образованная в смесительной камере 20 инжектора 14 подогретая газожидкостная смесь по трубопроводу 22 подается под напором в рассредоточитель потока 23, который может быть выполнен в том числе и в виде закольцованной системы перфорированных трубопроводов. Из отверстий рассредоточителя потока 23 газожидкостная смесь отдельными малыми струйными потоками вводится во внутреннюю камеру 7, поднимается вверх и смешивается с содержимым камеры 7 и вливающейся в нее массой из камеры 6.
При аварийном или каком-либо другом вынужденном прекращении работы насоса 18 с инжектором 14, а также при спонтанном обильном газообразовании в камере 6 давление биогаза в камере 6 может превысить 2,0 кПа /200 мм вод. столба/, что обусловит автоматическое срабатывание редукционного клапана 25, и биогаз из камеры 6 поступит в газопровод 28 и далее через газгольдер к потребителю /в газопроводе 28, как и во внутренней камере 7 метантенка, давление биогаза поддерживается газгольдером на уровне 2,0 кПа/.
При образовании в камере 6 вакуума более 2,0 кПа автоматически срабатывает редукционный клапан 27, и биогаз из газопровода 28 по газопроводу 26 поступит в камеру 6 и по газопроводу 12 будет отсасываться инжектором 14.
В зависимости от видов, количества и качества отходов, дозы и периодичности их загрузки в метантенк, температуры сбраживания и других факторов в назначении режима работы метантенка регулировочная величина давления сработки редукционных клапанов 25 и 27 может изменяться.
Поддержание устанавливаемой температуры сбраживания органической массы в метантенке вне зависимости от температуры внешней среды в различные периоды года обеспечивается автоматически тем, что в трубопроводе ввода сбраживаемой массы от насоса 18 в теплообменник 16 установлен /на чертеже не показан/ датчик температуры, взаимодействующий с терморегулятором автоматического регулирования температуры воды нагревателя 17, обеспечивающего необходимый подогрев сбраживаемой массы в теплообменнике 16 до ее ввода в метантек через инжектор 14.
Предложенный способ последовательного пофазного анаэробного сбраживания разжиженных органических отходов сельского хозяйства и коммунальных стоков, предусматривающий совместное гидравлическое жидкостное и газовое перемешивание сбраживаемой массы одновременно с ее подогревом в коаксиальном метантенке в сочетании с отсосом биогаза из его внешней камеры, может быть осуществлен в диапазоне температур от 12 до 60oC, выбор оптимальной из которых обуславливается конкретными условиями.
Экспериментальная проверка предложенного способа и метантенка для его осуществления, проведенная применительно к анаэробному сбраживанию помета кур, навоза крупного рогатого скота и свиней, показала высокую эффективность процесса, упростила его управление.
Изобретение относится к сельскому хозяйству и может быть использовано при приготовлении высококачественных обеззараженных органических удобрений из различных органических отходов. Во внешнюю камеру метантенка подают разжиженные органические отходы и осуществляют последовательное анаэробное сбраживание во внешней и внутренней камерах. Сбраживаемую массу подогревают и перемешивают, сброженный осадок выводят из метантенка, а из его внешней и внутренней камер отбирают биогаз, который смешивают в инжекторе со сбраживаемой в метантенке массой. До ввода в инжектор сбраживаемую массу подогревают, а нагретую газожидкостную смесь вводят во внутреннюю камеру метантенка. В метантенке для осуществления способа новым является то, что патрубок отвода биогаза из внешней камеры соединен с инжектором, который через взаимодействующий с нагревателем теплообменник соединен с насосом забора сбраживаемой массы из метантенка. Патрубок смесительной камеры инжектора соединен с напорным трубопроводом нагретой газожидкостной смеси, введенным в метантенк. Использование изобретения позволяет повысить эффективность анаэробного сбраживания, улучшить качество и калорийность биогаза. 2 с. и 4 з.п. ф-лы, 2 ил.
RU 2073401 C1, 20.02.1997 | |||
МЕТАНТЕНК | 1995 |
|
RU2108702C1 |
Способ запуска биогазовой установки | 1988 |
|
SU1622357A1 |
УСТАНОВКА АНАЭРОБНОЙ СТАБИЛИЗАЦИИ ОСАДКОВ СТОЧНЫХ ВОД | 1997 |
|
RU2111179C1 |
DE 3537310 A1, 22.05.1986. |
Даты
2001-03-10—Публикация
1999-08-02—Подача