Настоящее изобретение относится к автоматизированным сепараторным системам нефтяных месторождений, предназначенным для использования в измерении объемов добычи, включая смесь из нефти, газа и воды. Более конкретно в сепараторной системе применяется расходомер Кориолиса, денсиметр и щуп обводнения для измерения объемов добычи соответствующих компонентов или фаз смеси скважинного продукта.
Нефтяные и газовые скважины пробуривают для дренирования горных пород, в которых содержатся добываемые количества нефти и газа. Нефть, газ и вода могут поступать в скважину одновременно из единого нефтеносного пласта. Этот многофазный поток нефти, газа и воды образует смесь скважинного продукта, которая может быть разделена на образующие ее компоненты. Разделять смесь продукта, состоящую из нефти, газа и воды, на составляющие ее компоненты желательно по той причине, что рынки существуют только для нефти и газа. Рынка воды не существует, поскольку обычно она соленая, что может создать проблемы с ее удалением. Добыча нефти и газа часто ассоциируется с добычей значительного количества воды, поскольку с коммерческой точки зрения имеет смысл эксплуатировать эти скважины до тех пор, пока затраты на выкачивание и на удаление соленой воды не превысят доход, полученный от продажи нефти и газа.
Нефтяное месторождение обычно проходит по множеству участков, сданных в аренду с правом добычи. Каждый участок или группа участков имеют оператора, который наблюдает за усилиями по эксплуатации определенной группы скважин. До того, как получить возможность должным образом управлять участком, оператор должен получить данные испытания скважин. Данные испытания скважины включают в себя давление на устье скважины, а также объемный расход соответственно образующих смесь скважинного продукта нефти, газа и воды из отдельной скважины. Оператор участка требует информации по испытаниям скважины для правильного распределения дохода, полученного на каждой эксплуатационной скважине среди различных собственников этой скважины. Кроме того, оператор участка требует информации по испытаниям скважины для проведения инженерных исследований с целью попытаться оптимизировать производственные показатели месторождения в целом. Так, например, инженер может предпочесть приостановку добычи нефти из скважины со слишком сильным обводнением и преобразовать скважину в скважину заводнения с целью способствовать подаче водного потока.
Эксплуатационные скважины нефтяного месторождения или части нефтяного месторождения часто связаны с единым производственным объектом, включающим в себя главный производственный сепаратор, сепаратор для испытания скважин, системы доступа к трубопроводу, скважины для удаления соленой воды и системы обеспечения безопасности. Применение общих или совместно используемых производственных мощностей избавляет оператора от дополнительных затрат на излишние мощности.
Испытательный сепаратор применяется для облегчения измерения объемного расхода по производственной информации, получаемой для отдельной скважины. Измерения включают объемные скорости потока соответственно нефтяной, газовой и водной фаз, например, 95 баррелей воды/сутки, 5 баррелей нефти/сутки и 6 тыс. куб футов газа в сутки. Другим полезным измерением является измерение обводнения. Термин "обводнение" обозначает здесь любой показатель, который представляет соотношение между объемом нефти и объемом воды в смеси нефти и воды. Согласно наиболее обычному применению слова "обводнение", скважинный продукт в приведенном выше примере будет иметь обводнение 95%, поскольку на долю воды приходится 95 баррелей из общего объема смеси нефти и воды, равного 100 баррелей. Термин "обводнение" применяется также иногда для обозначения отношения общего объема добытой нейти к общему объему добытой воды. Термин "загрязненный нефтью" может подразумевать объем нефти, разделенный на суммарный объем нефти и воды. Как здесь показано, термин "обводнение" охватывает все эти альтернативные определения.
Главный производственный сепаратор и сепаратор для испытания скважин применяются каждый для разделения соответственно нефтяной, газовой и водной фаз, которые поступают на этот производственный объект в виде смеси этих фаз или компонентов. На главный производственный сепаратор поступают комбинированные объемы добычи со многих скважин с целью подготовки этих объемов к последующей продаже. Сепаратор для испытания обычно имеет более низкую по сравнению с главным производственным сепаратором производительность и предназначен для использования при измерении производительности отдельной скважины. В данном случае термин "фаза" относится к типу текучей среды, которая может находиться в контакте с другими текучими средами, например смесь нефти и воды, содержит дискретную нефтяную фазу и дискретную водную фазу. Аналогичным образом смесь нефти, газа и воды содержит дискретную газовую фазу и дискретную жидкую фазу, включающую нефтяную фазу и водную фазу. Отраслевая терминология называет "двухфазным" сепаратором агрегат, применяемый для отделения газовой фазы от жидкой фазы, включающей нефть и воду. "Трехфазный" сепаратор применяется для отделения газа от жидких фаз и, кроме того, разделения жидкой фазы на нефтяную и водную фазы.
По сравнению с двухфазными сепараторами трехфазные сепараторы требуют дополнительных клапанов и перегородок и обычно имеют больший объем для того, чтобы допустить более длительное время нахождения скважинного продукта для гравитационной сепарации продукта на образующие его нефтяной, газовый и водный компоненты. Применение трехфазного сепаратора позволяет непосредственно измерять разделенные компоненты. Погрешность присутствует даже при этом непосредственном изменении, поскольку редко или вообще никогда не удается отделить на производственном объекте от разделенного нефтяного компонента. Остаточное содержание воды в разделенном нефтяном компоненте обычно достигает приблизительно десяти процентов даже после применения сепаратора для удаления из нефтяного компонента большей части воды.
Двухфазные сепараторы дешевле, имеют гораздо более простую конструкцию и в меньшей степени нуждаются в техническом обслуживании по сравнению с трехфазными сепараторами. Применение двухфазного сепаратора обычно не допускает выполнения непосредственных объемных измерений разделенных жидких (нефти и воды) компонентов при фактических производственных условиях. Применение отдельного расходомера Кориолиса в сочетании с двухфазным сепаратором удачно позволяет измерять соответствующие объемы нефти и воды, покидающих испытательный сепаратор.
В отрасли известно применение для измерения обводнения добытого продукта емкостного зонда или зонда сопротивления. Эти приборы по определению обводнения работают на том принципе, что нефть и вода обладают резко различными диэлектрическими постоянными. Таким образом, зонд обводнения может измерить объемное содержание воды в комбинированном потоке нефти и воды. Эти приборы, однако, допускают приемлемую точность измерений обводнения только в том случае, когда объем воды составляет от менее чем приблизительно 20% до 30% от всего потока. Верхний обеспечивающий точность предел, равный 30%, гораздо ниже того уровня, который наблюдается на большинстве эксплуатационных скважин. Так, например, на долю воды может приходиться до 99% от общего объема добычи жидкости. Приборы по определению обводнения применяются поэтому для определения обводнения в нефтяной компоненте с низкой водной компонентой. Приборы определения обводнения чаще всего не могут использоваться для определения содержания воды в материале, вытекающем из двухфазного сепаратора, поскольку содержание воды в жидкости превышает верхний предел точности, равный 30%.
Существует необходимость пересчета определенного расходомером Кориолиса массового расхода в объемный расход, поскольку продукцию нефтяных месторождений обычно продают по объему, а не по массе. Обычные измерители Кориолиса обладают многочисленными возможностями, дополняющими их способность выполнять измерения массового расхода. Обычный массовый расходомер Кориолиса может также применяться как денсиметр с вибротрубой. поскольку массовый расходомер действует на принципе вибротруб, служащих пружинной и массовой системой. Эти значения плотности используются для пересчета данных о суммарном массовом расходе в объемные значения. Тем не менее для общего комбинированного потока больше подходят объемные измерения.
Существуют многочисленные трудности в использовании расходомера Кориолиса для определения соответствующих массовых долей нефти, газа и воды в общем комбинированном потоке. Массовый расходомер Кориолиса может использоваться для определения суммарного массового расхода и распределения суммарного массового расхода по соответствующим компонентам или фазам в комбинированном потоке. Техника расчетов особенно полезна при определении массового распределения расходов двух фаз (например, нефти и воды), даже в этом случае существующая техника требует лабораторного анализа отобранных вручную проб для определения показателей плотности с целью их последующего использования при определении объемного расхода и расчета обводнения.
В патенте США N 5029482 описано использование эмпирически выведенных корреляций, которые определяются при протекании комбинированных потоков газа и жидкости с известными массовыми долями соответственно газовой и жидкой составляющей через измеритель Кориолиса. Эмпирически выведенные корреляции используются затем для расчета доли газа и доли жидкости в комбинированном потоке газа и жидкости с неизвестным соотношением содержания газа и жидкости, основываясь на непосредственных измерениях расходомером Кориолиса общего массового расхода.
В патенте США N 4773257 показано, что долю воды в общем потоке нефти и воды можно рассчитать так, как показано ниже в формуле (1):
Xw = (De - Do,T)/(Dw,T - Do,T), (1)
где Xw является долей воды в массе комбинированного потока нефти и воды; De является плотностью общего комбинированного потока нефти и воды при температуре T; Do,T является известной плотностью чистого нефтяного компонента общего комбинированного потока при температуре T; и Dw,T является известной плотностью воды в общем комбинированном потоке при температуре T. Значения Do,T и Dw,T можно скорректировать с учетом воздействия температуры согласно приведенным ниже формулам (2) и (3):
Do,T = Do* - Co(T - Tr), (2)
Dw,T = Dw* - Cw(T - Tr), (3)
где Do* является плотностью нефти при эталонной температуре Tr (которую обычно выбирают равной 60oF (15,6oC); Dw* является плотностью воды при эталонной температуре Tr; Co является коэффициентом теплового расширения нефти; Cw является коэффициентом теплового расширения воды; определения остальных переменных приведены выше. Специалистам в данной области техники должно быть понятно, что коэффициенты теплового расширения Co и Cw, так же как другие корреляции, позволяющие внести поправку в плотность в зависимости от температуры, могут быть получены из различных источников, включая публикации Американского института нефти.
Общий объемный расход рассчитывают по формуле (4):
Qe = Me/De, (4)
где Qe представляет собой результат измерения массового расхода по Кориолису, полученный для общего комбинированного потока нефти и воды; определение других терминов приведено выше.
Объемный расход нефти рассчитывают по формуле (5):
Qo = Qe(1 - Xw), (5)
где Qo представляет собой объемный расход нефти, а определение остальных переменных приведено выше.
Объемный расход воды рассчитывают по формуле (6):
Qw = Qe•Xw, (6)
где Qw представляет собой объемный расход воды, а определение остальных переменных приведено выше.
Значения объемного расхода Qo и Qw можно скорректировать на стандартную эталонную температуру Tr путем умножения значений объемного расхода на плотность при температуре измерений и деления ее на плотность при эталонной температуре, например, как в формуле (7):
Qo* = Qo,T•Do,T/Do*, (7)
где Qo является объемным расходом нефти при стандартной эталонной температуре Tr; Qo,T является объемным расходом нефти, измеренным при температуре T и рассчитанным согласно формуле (5); а определение остальных переменных приведено выше.
Серьезная проблема возникает при использовании формул (1) - (7) из-за того, что значения плотности Do,T и Dw,T должны быть измерены по пробам, отобранным вручную из конкретной эксплуатационной скважины. В отсутствие лабораторных измерений оказывается невозможным пересчитать отнесенную к фазам информацию о массовом расходе в объемы нефти и воды, поскольку расходомер Кориолиса не может дать значения плотности нефти и воды путем непосредственного измерения комбинированного потока. Обстоятельства отбора проб часто являются источником погрешностей в лабораторных измерениях, поскольку пробу открывают при атмосферном давлении. Действие атмосферного давления ведет к удалению газа из раствора так, что полученная проба имеет относительно повышенную плотность по сравнению с прежней, находившейся под высоким давлением пробой. Кроме того, практически невозможно создать в лаборатории условия для измерений, воспроизводящие полевые условия. Значение плотности добытых текучих сред часто меняются в течение срока эксплуатации скважины. Поэтому требуется периодический отбор проб добытых текучих сред. Поэтому лабораторным измерениям по самой их сути присущи погрешности из-за своевременности отбора проб и невозможности воспроизвести в лаборатории условия технологической линии.
Непосредственные измерения плотности, выполненные расходомером Кориолиса, не могут использоваться для объемных расчетов из-за того, что чаще всего бывает невозможно получить удовлетворительные результаты непосредственного измерения плотности отдельного нефтяного компонента. Даже если сепаратор используется для отделения нефтяного компонента от водного компонента, отделенная фаза сохраняет около десяти объемных процентов воды. Остатки воды вызывают погрешности при непосредственном измерении плотности.
Другим источником погрешностей при определении объемных показателей в процессе испытания скважины является растворенный в нефти природный газ, высвобождающийся при понижении давления. Поведение добытой текучей среды в зависимости от давления, объема и температуры может привести к заметным различиям измеренных количеств разделенных нефти и газа, которые получаются из смеси скважинного продукта. Понижение давления приведет к высвобождению газа из нефтяной фазы. Повышение давления направляет газ обратно в раствор. Поэтому желательно, чтобы условия в испытательном сепараторе были близки к условиям в главном производственном сепараторе.
Давление в испытательном сепараторе может отличаться от давления в главном производственном сепараторе. Двухфазные сепараторы испытания скважин часто вызывают испарение текучей среды за счет выделения газа из текучей среды при пониженном давлении, когда жидкости спускаются из сепараторов. Усилий для контроля давления в испытательном сепараторе во время спуска жидкостей не прикладывают из-за того, что считается, что разделенные компоненты продукции будут воссоединены в главном производственном сепараторе для конечной продажи. Неспособность контролировать давление при испытаниях ведет к получению ошибочных объемных показателей, поскольку пониженное давление газа ведет к тому, что газ покидает нефтяную фазу, в которой он растворен. Таким образом, объем текучей среды уменьшается, а жидкость получает более высокую плотность.
Существует несущая потребность в расходомере Кориолиса, который может измерять показатели объемного расхода соответствующих фаз или компонентов в общем потоке продукции, не требуя при этом лабораторных измерений, отобранных вручную проб из потока продукции, чтобы определить плотность соответствующих компонентов. Кроме того, существует потребность в испытательной сепараторной системе, в измерительном цикле которой используются условия линии сбытовой продукции или главного производственного сепаратора с целью сохранения целостности измерений объемных показателей.
Настоящее изобретение решает описанные выше проблемы за счет предложения полностью автоматизированной системы испытания скважин на основе расходомера Кориолиса, не требующей ручного отбора проб или лабораторного анализа текучих сред продукции для того, чтобы определить плотность нефтяного и газового компонентов. Кроме того, испытательная система позволяет избежать погрешностей объемных измерений, возникающих в связи с высвобождением растворенного в нефти природного газа при пониженном давлении.
Система испытания скважин, являющаяся предметом настоящего изобретения, имеет два режима работы. Испытательная система работает как обычная система испытания скважин, предназначенная для измерения объема соответствующих компонентов, отделенных от смеси компонентов, а именно: продукции скважины, включающей нефтяной, газовый и водный компоненты. Система испытания скважин включает в себя также специальный режим определения плотности, который позволяет обойтись без отбора вручную проб входящих в продукт текучих сред с тем, чтобы определить их плотность. Выполненные на месте измерения плотности, полученные у системы, являются более точными, чем лабораторные измерения, поскольку измерение характеристик текучих сред осуществляется в условиях производственных линий.
Система содержит испытательный сепаратор, в который поступает продукт скважины и который разделяет эту смесь на отдельные компоненты. Трубопровод с клапанами применяется для избирательного заполнения испытательного сепаратора продуктом отдельной скважины. Испытательный сепаратор применяется для удерживания смеси нефтяной, газовой и водной фаз или компонентов, в то время как сила тяжести отделяет эти компоненты от смеси скважинного продукта. Дренажный клапан открывается для того, чтобы по меньшей мере частично спустить из испытательного сепаратора жидкие компоненты смеси скважинного продукта после отделения соответствующих компонентов. Расходомер Кориолиса (включая массовый расходомер и денсиметр) применяется для измерения массового расхода соответственно нефтяного и водного компонентов по мере их выхода из испытательного сепаратора. Денсиметр применяется для получения показателя плотности отделенного компонента нефти внутри испытательного сепаратора. Монитор обводнения применяется для получения показателей обводнения отделенной нефтяной фазы. Все вместе показатели плотности текучей среды, температуры, массового расхода и обводнения используются для расчета объемного расхода нефтяного и водного компонентов в потоке продукции. Эта поправка позволяет более точно рассчитать объемный расход нефти.
В предпочтительных вариантах реализации погрешности определения объемных показателей также сводятся к минимуму за счет подсоединения к испытательному сепаратору источника сжатого газа. Источник сжатого газа используется для поддержания по существу постоянного давления в сепараторе даже тогда, когда дренажный клапан сепаратора пропускает струю жидкостей в испытательном сепараторе.
Другие важные особенности, цели и преимущества будут очевидны для специалистов в данной области из приведенного далее описания в сочетании с прилагаемыми чертежами.
Фиг. 1 изображает схематическое расположение автоматизированной системы испытания скважин, согласно настоящему изобретению.
Фиг. 2 изображает блок-схему, демонстрирующую работу системы, показанной на фиг. 1.
На фиг. 1 показана автоматизированная система 20 испытания скважин. Основными компонентами системы 20 являются трубопровод 22 с клапанами, применяемый для избирательного подключения отдельных скважин, испытательный сепаратор 24, сливная линия 26 измерительных приборов для определения расхода, предназначенная для использования при измерении объемных расходов компонентов продукции, поступающих из испытательного сепаратора 24, система 28 создания газовой оболочки, предназначенная для поддержания в испытательном сепараторе 24 постоянного давления, и система 30 автоматизации. Отдельные компоненты испытательной системы 20 могут быть приобретены у различных коммерческих источников и собраны по схеме, показанной на фиг. 1.
Трубопровод 22 с клапанами содержит множество клапанов, например клапан 32. Каждый клапан соединен с подводящим трубопроводом от устья скважины, например подводящим трубопроводом 34, который ведет к отдельной эксплуатационной скважине (на чертеже не показана). Каждый клапан соединен с подводящим трубопроводом испытательного сепаратора, например трубопроводом 36, ведущим к сборной линии 38 испытательного сепаратора. Каждый клапан соединяется также со сборной линией 40 главного производственного сепаратора, ведущей к обычному главному производственному сепаратору 42. Клапаны, подобные клапану 32, предпочтительно являются трехходовыми электропневматическими клапанами, контролирующими доступ к линии испытательного сепаратора 38 и сборной линии 40 главного производственного сепаратора. Особенно предпочтительным для применения в этой области трехходовым клапаном является клапан переключения скважин Xomox TUFFLINE 037AX WCB/316 с исполнительным механизмом MATRYX MX 200. Клапаны предпочтительно сконфигурированы на прием каждой добываемой текучей среды из соответствующей отдельной скважины. Клапаны могут избирательно отклонять добываемые текучие среды к сборной линии 40 главного производственного сепаратора, где эти текучие среды соединяются с текучими средами от других клапанов для транспортировки к главному производственному сепаратору 42. Отдельный клапан может быть выбран для отвода продукта от соответствующей скважины к сборной линии 38 испытательного сепаратора с целью транспортировки на испытательный сепаратор 24.
Испытательный сепаратор 24 является обычным гравитационным сепаратором для испытания скважин, имеющим овалоидную наружную стенку 44, обладающую достаточной прочностью для того, чтобы выдержать испытательное давление скважины. Испытательный сепаратор 24 снабжен электронным индикатором 46 уровня жидкости, предназначенным для указания автоматической системе 30 уровня всей жидкости, включая воду 48, водно-нефтяную эмульсию 50 и нефть 52. Газ 54 остается в испытательном сепараторе 24 выше общего уровня жидкости. Примером индикатора 46 жидкости может служить аналоговый поплавковый указатель уровня со смотровым стеклом Fisher Model 249 B-2390. Испытательный сепаратор 24 соединяется с выпускной линией 56 топочного газа, которая предпочтительно содержит датчик 58 давления, например датчик давления модели 2088 фирмы "Rosemount", Эден Прери, шт. Миннесота. Выпускная линия 56 топочного газа предпочтительно содержит также газовый расходомер модели 8800 фирмы "Rosemount", Эден Прери, шт. Миннесота или датчик перепада давления на диафрагме, такой как датчик модели 3051 фирмы "Rosemount ", Эден Прери, шт. Миннесота. Снабженный электронным управлением дроссельный клапан 62 регулирования расхода газа управляет потоком газа через выпускную линию 56 топочного газа. Клапан 62 можно, например, приобрести как клапан модели V2001066-ASCO у фирмы "Fisher", Маршалл Таун, шт. Айова. Линия 56 выпуска газа оканчивается в главном производственном сепараторе 42.
Выпускная линия 26 расходомерных приборов соединятся с местом слива 64 испытательного сепаратора 24. Выпускная линия 26 расходомерных приборов включает в себя монитор 66 обводнения, который использует результаты измерения электрических характеристик для количественного определения обводнения текучих сред, протекающих по выпускной линии 26 расходомерных приборов. Вода и нефть обладают очень различающимися диэлектрическими постоянными, что позволяет использовать результаты измерения электрических характеристик для количественного определения обводнения текучих сред. Так, монитор 66 обводнения может использовать для количественного определения обводнения текучих сред результаты измерения емкостного сопротивления, сопротивления или иных характеристик. К другим поставляемым промышленностью устройствам относится применение для определения обводнения микроволнового излучения. Примером монитора 66 обводнения является емкостный монитор Drexebrook Model CM-2. Выпускная линия 26 расходомерных приборов идет от монитора 66 обводнения к жидкостному расходомеру 68. Жидкостный расходомер 68 предпочтительно включает в себя расходомер Кориолиса (включая массовый расходомер, денсиметр и датчик температуры), определяющий массовый расход, плотность и температуру измерения расхода материалов, проходящих через выпускную линию 26 расходомерных приборов. Примерами расходомера 68 могут служить ELITE модели CMF300356NU и модели CMF300H551NU, поставляемые фирмой "Micro Motion", Боулдер, шт. Колорадо. Датчик 69 температуры предусмотрен для измерения температуры текучих сред в выпускной линии 26 расходомерных приборов. Примером датчика 69 температуры является датчик модели 68 фирмы "Rosemount", Эден Прери, шт. Миннесота. Окно 70 для отбора проб является управляемым вручную вентилем, предусмотренным для отбора проб текучих сред в линии 26. Линейный статичный смеситель 71 используется для того, чтобы гарантировать отбор из линии 26 через окно 70 хорошо перемешанных проб.
Дренажный клапан 72 предпочтительно является электропневматическим клапаном. Дренажный клапан 72 может открываться для дренажа испытательного сепаратора 24 через выпускную линию 26 расходомерных приборов и может закрываться для того, чтобы дать возможность испытательному сепаратору 24 заполниться продуктом через трубопровод 22 с клапанами. Примером дренажного клапана 72 может служить клапан контроля уровня Fisher модели EZ-667-ASCO. Выпускная линия 26 расходомерных приборов оканчивается в производственном сепараторе 42.
Система 28 образования газовой оболочки содержит источник 74 сжатого газа, которым может служить газ от компрессора или топливный газ источника сжатого газа, который используется для привода производственного агрегата. Источником газа 74 может также быть главный производственный сепаратор 42. Газ 74 поступает в питающую газовую линию 76, ведущую к клапану 80 газовой оболочки. Примером клапана 80 может служить Fisher модели 357-546. Клапан 80 предпочтительно работает для поддержания постоянного давления в испытательном сепараторе 24 путем дросселирования потока газа в питающей линии 76. Питающая линия 76 оканчивается в верхней входной точке 82 испытательного сепаратора 24.
Автоматизированная система 30 применяется для управления работой системы 20. Система 30 включает в себя компьютер (например, аппарат, совместимый с IBM 486), запрограммированный на сбор данных и программирование. Предпочтительной формой программного продукта является программный продукт Intellution DMACS, который поставляется INTELLUTION, дочерней фирмой Fischer Industries. Это программное обеспечение является особенно предпочтительным по той причине, что может включать сигнализацию, указывающую на отклонения условий испытания скважины, связанные с механическими поломками, которые могут оказаться потенциально опасными. Компьютер 84 контролирует программирование дистанционного контроллера операций 86, включающего множество драйверов и интерфейсов, позволяющих компьютеру 84 взаимодействовать с дистанционными компонентами системы 20. Предпочтительной формой дистанционного контроллера 86 операции является Fischer модели ROC364. Контроллер 86 может также быть запрограммирован таким образом, чтобы облегчить применение команд управления компьютера 84. Управляющие выводы 88, 90, 92 и 94 клапана соединяют соответственно контроллер 86 с соответствующими клапанами 32, 80, 72 и 62 с электронным управлением для избирательного управления клапанами. Вывод 96 соединяет котроллер 86 с датчиком 58 давления. Вывод 98 соединяет контроллер 86 с газовым расходомером 60. Вывод 100 соединяет контроллер 86 с измерителем обводнения 66. Вывод 102 соединяет контроллер 86 с датчиком 104, который, в свою очередь, соединяется с уровнемером 46 текучей среды, жидкостным расходомером 68 и датчиком 69 температуры для передачи информации на контроллер 86. Примером датчика 104 может служить ELITE модели RFT9739, поставляемый фирмой "Micro Motion", Боулдер, шт. Колорадо.
На фиг. 2 показана схема управления процессом, управляющая работой испытательной системы 20. На фиг. 2 управление процессом осуществляет управляющая программа в компьютере 84 или контроллере 86. Операция P200 представляет собой обычный режим испытаний, который может дополнительно включать в себя испытание выбранной скважины путем настройки трубопровода 22 на пропуск потока через испытательный сепаратор 24, или путем использования трубопровода 22 с клапанами для обхода испытательного сепаратора 24 путем пропуска всего продукта через главный производственный сепаратор 42 в том случае, когда никаких испытаний не требуется.
В ходе операции P200 оператору участка нужно точно узнать величину объемного расхода нефти Qo, определение которого дано выше в формуле (5), и объемного расхода воды Qw, определение которого дано выше в формуле (6). Расчет этих величин требует расчета доли воды, такой как Xw, определение которой приведено выше в формуле (1). В формуле (1) расходомер может представить только показатель комбинированной плотности De во время испытаний данной скважины. В связи с этим формула (1) основывается на лабораторных измерениях значения Do,T и Dw,T. Как показано выше, эти лабораторные измерения часто имеют недостаточную точность в связи с тем, что лабораторные условия не соответствуют условиям (например, давлению, температуре и содержанию газа в растворе) в испытательной системе 20.
Согласно настоящему изобретению, значения Do,T и Dw,T в формуле (1) заменяются значениями Po,T и Pw,T согласно формуле (8):
(8) Xw = (De-ρo,т)/(Pw,т-ρo,т),
где ρo,т является плотностью чистой нефтяной фазы с исключением любого остаточного содержания воды в отделенном нефтяном компоненте; ρw,т является плотностью чистой водной фазы; остальные переменные определены выше. Переменные ρo,т и ρw,т в формуле (8) отличаются от переменных Do,T и Dw,T в формуле (1), поскольку переменные Do,T и Dw,T получены на основании лабораторных измерений, выполненных на пробах, отобранных вручную, например, в расходомерной лаборатории после отбора из системы 20 через кран 70. В отличие от этого переменные ρo,т и ρw,т получены на основании измерений на линии, производимых расходомером 68 на материалах, находящихся внутри испытательной системы.
Приведенный ниже анализ, касающийся операций 201-214, описывает, каким образом можно выполнить на линии измерение ρo,т и ρw,т. Эти величины имеют значение, поскольку каждая из формул (1) - (7) дает более точный результат за счет подстановки вместо Do,T и ρo,т и за счет подстановки вместо Do,Т и ρw,т, как это было сделано в формуле (1) в случае формулы (8). Это обеспечивает более высокую точность расчетов, поскольку измерения плотности на линии устраняют необходимость в связанных с погрешностями лабораторных измерений при расчете Do,T и Dw,T. В отличие от этого формула (1) основывается на связанных с погрешностями лабораторных измерениях, которые иногда не отражают условий, существующих в линии.
Расходомер 68 предпочтительно запрограммирован на выполнение расчетов по формулам (2) - (8) путем подстановки ρo,т и ρw,т вместо Do,T и Dw,T. Эти расчеты могут также выполняться компьютером 84 или контроллером 86.
Необходимо периодически обновлять переменные Po,T и Pw,T, поскольку их значения меняются в течение периода эксплуатации скважины. Поэтому изображенный на фиг. 2 процесс включает в себя режим определения плотности, начинающийся в ходе операции P201. В ходе операции P201 компьютер 85 дает команду контроллеру 86 на приведение в действие одного из клапанов на трубопроводе 22 (например, клапан 32). Такое приведение в действие отклоняет поток материалов от выбранной скважины через клапан к испытательному сепаратору 24. Клапан не требуется приводить в действие, если скважина уже работает на испытания на сепараторе 24, однако обычно было бы лучше войти в режим определения плотности перед выполнением самого испытания скважины.
В ходе операции P202 контроллер открывает дренажный клапан 72 для того, чтобы пропустить поток материалов из клапана 32 через испытательный сепаратор 24 и выпускную линию 26 расходомерных приборов в главный производственный сепаратор 42. Контроллер 86 использует жидкостной расходомер 68 для измерения суммарного объема жидкости, достаточного для заполнения сборной линии 38, испытательного сепаратора 24 и части выпускной линии 26 расходомерных приборов, находящейся перед расходомером 68. Этот объем протекает через испытательный сепаратор 24, но не заполняет испытательный сепаратор, поскольку дренажный клапан остается открытым. Несколько таких объемов могут быть дополнительно использованы для того, чтобы гарантировать, что испытательный сепаратор 24 полностью освобожден от жидкостей из другой скважины, которые не протекают через клапан 32. Эта операция продувки объемного испытательного сепаратора обеспечивает значительные преимущества в сравнении с обычными циклами продувки сепаратора, которые определяются временем протекания, необходимым для продувки сепаратора. Циклы продувки, определяющиеся временем, могут привести к неполной продувке сепаратора, и испытательные измерения могут в конечном счете производиться над текучими средами не из той скважины. Объемная продувка гарантирует, что испытательные измерения в конечном счете выполняются над материалами из нужной скважины.
В ходе операции P204 контролер 86 закрывает дренажный клапан 72 для заполнения испытательного сепаратора 24 жидкостью. В то же время клапан 32 продолжает пропускать материал в испытательный сепаратор 24 до тех пор, пока индикатор уровня 46 не выдаст сигнал, сообщающий контроллеру 86, что жидкость в испытательном сепараторе 24 достигла уровня заполнения. Уровень заполнения предпочтительно определяется оператором участка, а контроллер 86 или компьютер 84 может быть запрограммирован на заполнение сепаратора 24 до различного уровня в случае каждой эксплуатационной скважины. Оптимальный уровень заполнения для каждой скважины определяют, исходя из опыта эксплуатации месторождения. Уровень заполнения предпочтительно основывается на общем уровне жидкости, но может также основываться на уровне нефти или воды, если в индикаторе 46 уровня используется утяжеленный поплавок. Газовый расходомер 60 измеряет объемный расход газа, выходящего из испытательного сепаратора 24 во время процесса заполнения, в то время как дроссельный клапан 62 регулирования расхода газа устанавливается контроллером 86 так, как необходимо для поддержания материалов внутри испытательного сепаратора 24 под практически постоянным давлением. Газовый расходомер 60 выдает сигналы на контроллер 86, который показывает объем газа, выходящего через выпускную линию 56 для газа.
Когда контролер 86 получает от индикатора 46 сигнал о том, что испытательный сепаратор 24 достаточно полон, контроллер 86 дает команду клапану 32 отвести продукцию к главному сепаратору 42 продукции. Контроллер 86 закрывает также клапан 80 газовой оболочки и дроссельный клапан 62 регулирования расхода газа, чтобы герметизировать материалы, находящиеся внутри испытательного сепаратора 24. Материалам внутри испытательного сепаратора 24 дают возможность оседать по мере того, как сила тяжести вызывает разделение нефтяного, газового и водного компонентов материала внутри испытательного сепаратора 24. Период ожидания гравитационного разделения может основываться на достаточном времени, например тридцати минутах, на что указывает опыт, накопленный в этой области. При первоначальной установке системы 20 оператор может наблюдать за разделением внутри испытательного сепаратора 24 через смотровое окно на индикаторе 46 уровня. Требующееся для разделения время задается в качестве программируемой информации в компьютере 84. Материалу внутри испытательного сепаратора 24 дают достаточно времени для того, чтобы сила тяжести вызвала стратификацию различных материалов. Эта стратификация обычно необязательно имеет место внутри двухфазного сепаратора, поскольку этот сепаратор предназначен только для измерения расхода двух фаз (газа и всей жидкости).
Уровень заполнения внутри испытательного сепаратора 24 во время гравитационного разделения предпочтительно составляет от приблизительно 60% до приблизительно 80% внутреннего объема сепаратора. Уровень слива предпочтительно падает приблизительно до половины внутреннего объема сепаратора. Соответствующие уровни заполнения и слива испытательного сепаратора 24 предпочтительно различаются для каждой скважины и могут быть запрограммированы в компьютере 84. Так, например, скважина с высокой степенью обводнения и низкой производительностью при небольшом содержании попутного газа предпочтительно связывается с высоким уровнем заполнения для оптимизации полученного объема нефти в сепараторе. В отличие от этого скважина с высоким соотношением газа и нефти и большим объемным расходом нефти должна предпочтительно иметь низкий уровень заполнения, при сливе очень небольшого объема до уровня слива с целью допустить отделение газовой фазы, не требуя при этом значительного объема слива для продувки отделенной водной фазы под нефтью.
В ходе операции P206, после того как контроллер 86 определяет, что материалы, находящиеся внутри испытательного сепаратора 24, в достаточной степени разделены, контроллер 86 открывает дренажный клапан 72 для того, чтобы слить материалы, находящиеся внутри испытательного сепаратора 20, через сливную линию 26 измерительных приборов в главный производственный сепаратор 42. Клапаны 32 и 62 остаются закрытыми. Объем материалов, слитых из испытательного сепаратора 24, предпочтительно оставляют относительно небольшим, т. е. меньше приблизительно пяти процентов общего объема сепаратора (пять баррелей для сепаратора емкостью сто баррелей). В ходе последующих операций этот небольшой объем слива допускает быстрое повторное заполнение испытательного сепаратора 24, необходимое для проведения точного испытания скважины с определением суточной дачи скважины.
Операция P208 включает выполнение измерений материалов, сливаемых через линию 26. Контроллер 86 принимает сигналы от монитора обводнения 66, который указывает обводнение жидкости, протекающей через сливную линию 26. Аналогичным образом контроллер 86 принимает от жидкостного расходомера 68 сигналы о массовом расходе и плотности. Эти сигналы могут быть пересчитаны в показатели объемного расхода или на расходомере 68, или на компьютере 84. Контроллер 86 принимает сигналы о температуре от монитора температуры 69. Контроллер 86 закрывает дренажный клапан 72, когда контроллер 86 принимает сигнал от индикатора 46 уровня жидкости, который указывает, что жидкие компоненты слиты из испытательного сепаратора 24 до минимального уровня, который позволяет избежать попадания газа в сливную линию 26 измерительных приборов. Расходомер 68 измеряет плотность разделенных материалов, вытекающих из испытательного сепаратора 24. Плотность воды (ρw,т) измеряют по слою воды 48, и она будет наибольшей из всех компонентов. Это измерение выполняют по фактически чистой воде, поскольку водный компонент по существу свободен от нефти. Эмульсия нефти в воде 50 обычно вызывает заметные колебания при измерении плотности, и эти значения игнорируются. Скачки в эмульсии нефти в воде также характеризуются плотностью, меньшей чем у воды, но большей, чем у нефти. Результаты измерений плотности эмульсии нефти в воде 50 игнорируются. Слой 52 нефти имеет самое низкое значение плотности. Результат измерения плотности (ρt) слоя нефти необходимо скорректировать на остаточное содержание воды, поскольку он обычно содержит около десяти процентов воды.
Измеренная плотность нефти корректируется на содержание воды по формуле (9)
(9) ρo,т= (ρt-ρw,тWC)/(1-WC),
где ρo,т является плотностью нефти с поправкой на содержание воды при температуре T; ρt является полной плотностью обводненного нефтяного компонента, измеренной расходомером 68 при температуре T; ρw является плотностью водного компонента, измеренной расходомером 68 по отделенной водной фазе при температуре T; и WC является показателем обводнения нефтяного компонента, выраженным в объемной доле воды в отделенном под воздействием силы тяжести нефтяном компоненте, покидающем испытательный сепаратор 24. WC измеряет монитор обводнения 66. Отмечено, что на монитор обводнения 66 можно положиться при получении точных показателей обводнения, поскольку обводнение в отделенной нефтяной фазе обычно не превысит 10%. Величина ρo,т используется в формуле (8), а величина Xw из формулы (8) используется в сочетании с формулами (2)-(7) для выполнения расчетов объемного расхода.
В ходе операции P208 желательно поддерживать в испытательном сепараторе 24 постоянное давление, поскольку избыточно высокие или низкие показатели давления могут привести в процессе объемных испытаний и измерения плотности к погрешностям в связи с выделением или поглощением газа жидкостями в сепараторе из-за ненормальных изменений давления. Контроллер 86 следит за сигналами от датчика 58 давления и использует эти сигналы для поддержания по существу постоянного давления внутри испытательного сепаратора 24. Контроллер 86 настраивает клапан 80 на подачу дополнительного газа, необходимого для компенсации понижения давления, сопровождающего увеличение объема газа, компенсирующее удаление из испытательного сепаратора 24 жидкости давление внутри испытательного сепаратора 24 предпочтительно поддерживается на уровне, равном или слегка превышающем уровень давления в главном производственном сепараторе 42. Небольшое дополнительное давление (например, +10 фунт/кв. дюйм) облегчит вытекание жидкостей через сливную линию 26 в главный производственный сепаратор 42 без внесения значительной объемной погрешности, давление внутри испытательного сепаратора 24 обычно составляет от 200 до 1500 фунт/кв.дюйм, плюс или минус примерно 20 фунт/кв.дюйм, однако давление может быть любым, которого требуют обстоятельства.
В ходе операции P210 компьютер 84 определяет, является ли количество нефти, измеренное жидкостным расходомером 68, достаточным количеством, позволяющим получить точный показатель. Желательно закрывать клапан 32 на очень короткие периоды времени, так, чтобы не прерывать периоды устойчивой работы эксплуатационной скважины значительными периодами падения или повышения давления. Поэтому дренаж испытательного сепаратора 24, который происходит в ходе операции P208, предпочтительно ограничивается относительно небольшими объемами, равными одному-трем баррелям суммарного продукта. Контроллер 86 предпочтительно требует, чтобы до завершения испытания было произведено пороговое значение, например 100 баррелей. Объемные измерения производятся в течение времени, когда скважина действительно фонтанирует. Если совокупное количество текучей среды при испытании скважины окажется недостаточным, контроль переходит к операции P212, повторяющей циклы заполнения и слива до тех пор, пока не будет получено достаточное для выполнения измерений количество нефти. В этом случае сигналы индикатора 46 уровня жидкости принимаются для индикации спуска воды до минимального уровня, не влекущего за собой спуска из испытательного сепаратора 24 нефти, пока операции P202 и P208 не будут повторены достаточное число раз, чтобы получить измеряемое количество нефти. Эта особенность процесса устраняет необходимость для оператора приобретать слишком большой испытательный сепаратор просто с целью получения достаточного количества нефти для измерений. Сразу после получения достаточного количества нефти для измерений операция P201 передает управление операции P214.
Операция P214 завершает режим определения плотности путем возвращения контроля к операции P201. Цикл предпочтительно повторяется до тех пор, пока показатели плотности не будут получены для всех фонтанирующих скважин, подключенных к трубопроводу 22. С другой стороны, операция P214 для проведения испытания скважины может возвратить контроль к операции P200.
Испытательная информация, полученная в ходе описанного выше процесса, включает данные об обводнении, объемном расходе газа, объемном расходе нефти, объемном расходе воды, плотности нефти, плотности воды, температуре в сепараторе и давлении в сепараторе. Компьютер 84 сохраняет эти значения для передачи оператору. С другой стороны, информация может быть передана оператору по радио, соединенному с контроллером 86. Система позволяет осуществлять более частое и точное испытание скважин, которое может осуществляться вручную рабочими насосных станций, посещающими производственный объект. Применение расходомера Кориолиса (включая массовый расходомер и денсиметр) в качестве расходомера 68 является особенно предпочтительным из-за присущей ему точности и надежности.
Понятно, что существуют многочисленные коммерческие источники получения материалов, перечисленных выше. Так, например, существует несколько потенциальных источников получения трехходовых клапанов с электронным исполнительным механизмом, таких как клапан 22, мониторов обводнения, таких как монитор 66, и индикаторов уровня текучей среды, таких как индикатор 46. Тот факт, что заявители указали конкретные предпочтительные коммерческие источники, не ограничивает практическую реализацию изобретения только изделиями, полученными из этих источником, поскольку специалисты в данной области техники легко могут найти и использовать по существу эквивалентные материалы из альтернативных источников. Кроме того, испытательный сепаратор 24 может быть обычным трехфазным сепаратором, имеющим множество внутренних поплавков и сливных отверстий для слива соответствующих фаз. В этом случае для каждой сливной линии потребуется отдельный жидкостной расходомер 68. В этой сфере применение термин "нефть" включает в себя конденсат из газовых скважин. Нет необходимости, чтобы скважина давала нефть, воду и газ, а только смесь материалов скважинного продукта, включающего множество этих различных фаз.
Изобретение относится к автоматизированным сепараторным системам нефтяных месторождений, предназначенным для использования в измерении объемов добычи, включая смесь из нефти, газа и воды. Техническим результатом является полная автоматизация испытания скважин и исключение погрешностей объемных измерений, возникающих в связи с высвобождением растворенного в нефти природного газа при пониженном давлении. Для этого автоматизированная систем испытания скважин использует расходомер Кориолиса, который служит массовым расходомером и денсиметром в сочетании с монитором обводнения для расчета объемных расходов и плотности материалов, сливаемых из испытательного сепаратора в комбинированном двухфазном потоке продукта. Величина плотности нефтяной фазы корректируется для устранения эффекта содержания в ней воды и делится на показатель массового расхода для получения чистого значения для нефти. Работой системы управляет автоматизированный контроллер, который применяет систему газовой оболочки для предупреждения низкого давления из-за выделения газа из жидкостей внутри испытательного сепаратора. 2 с. и 9 з.п. ф-лы, 2 ил.
ρo,т= (ρt-ρw,tWC)/(1-WC),
где ρo,т - является плотностью нефти с поправкой на содержание воды при температуре T;
ρt - является полной плотностью обводненного нефтяного компонента, измеренной денсимером при температуре Т;
ρw - является плотностью водного компонента, измеренной расходомером по отделенной водной фазе при температуре Т;
WC - является показателем обводнения нефтяного компонента, включая остаточную воду, выраженным как объемная доля воды в отделенном нефтяном компоненте.
ГИМАТУДИНОВ Ш.К | |||
Справочная книга по добыче нефти | |||
- М.: Недра, 1974, с | |||
Способ генерирования переменного тока | 1923 |
|
SU484A1 |
Способ измерения дебита нефтяных скважин | 1984 |
|
SU1310514A1 |
Весовой дебитомер | 1986 |
|
SU1382940A1 |
Устройство для измерения дебита нефтяных скважин | 1988 |
|
SU1553661A1 |
Установка для сбора и измерения продукции нефтяных скважин | 1988 |
|
SU1652521A1 |
СПОСОБ ТРАНСПОРТИРОВАНИЯ ВОДОГАЗОНЕФТЯНОЙ СМЕСИ | 1992 |
|
RU2020371C1 |
RU 2059067 C1, 27.04.1996 | |||
КОМБИНИРОВАННЫЙ ШЛИФОВАЛЬНЫЙ КРУГ | 1999 |
|
RU2151047C1 |
КОЛЕСО ВЕЗДЕХОДА | 2003 |
|
RU2242373C2 |
US 4773257 A, 27.09.1988 | |||
US 5029482 A, 09.07.1991. |
Авторы
Даты
2001-05-27—Публикация
1996-12-23—Подача