Предлагаемое изобретение относится к области обнаружения скрытых масс или объектов и оценки состояния окружающей среды посредством измерения физических и химических параметров поверхности земли, а именно к способам поиска месторождений полезных ископаемых и контроля качества окружающей среды, и может найти применение при разведке тел и залежей углеводородов и при мониторинге экологической обстановки природно-техногенного ландшафта.
Общеизвестно, что на границе раздела атмосфера-литосфера-гидросфера постоянно происходит процесс энерго-массообмена. Интенсивность, компонентный состав и пространственное распределение перетока энергии и массы зависит от геологической среды и природно-техногенного ландшафта. Количественная и качественная оценка процесса энерго-массоперетока производится путем измерения таких параметров на поверхности земли, описываемых физическими величинами, характеризующими радиоактивное излучение, электромагнитное излучение, тепловое поле, магнитное поле и т.п.
Известен способ дозиметрического контроля радиоактивности окружающей среды, реализуемый посредством постоянных измерений поглощенной дозы в течение продолжительных промежутков времени (1, 2). Его сущность заключается в том, что в полевых условиях производят интегральные измерения небольших поглощенных доз ионизирующей радиации, накапливаемых высокочувствительными термолюминесцентными дозиметрами (ТЛД). Причем ТЛД помещаются в бескалиевые стеклянные ампулы или пластмассовые футляры, хранятся на пикетах в перфорированных металлических или пластмассовых трубках на высоте 1 метра над землей и вынимаются оператором через определенные промежутки времени для получения данных.
Недостатком данного способа является значительный объем ручной работы оператора при выемке ТЛД из трубок, ампул из футляров, съему показаний и повторной закладке ТЛД в контейнеры, а также транспортировке ТЛД от пикета к измерительному прибору и обратно. Для обеспечения статистической достоверности получаемых данных при контролируемой площади поверхности земли от нескольких квадратных километров до нескольких десятков квадратных километров устанавливают 102-103 пикетов, что соответствует затратам времени на получение данных 100-400 часов (в зависимости от числа операторов и измерительных приборов, а также условий передвижения на местности).
Известен способ радиогеохимического картирования, основанный на шпуровой термолюминесцентной радиометрической съемке (3-5). Сущность этого способа заключается в том, что выполняется следующая последовательность операций: размечают пикеты, которые привязываются с помощью топографических карт и JPS-приемника к местности, проходят шпуры в рыхлых отложениях диаметром около 3 см на глубину 0,5-0,8 м; закладывают в шпуры ТЛД в водонепроницаемых упаковках; экспонируют ТЛД в шпурах в течение 15-30 суток; извлекают из шпуров ТЛД; транспортируют ТЛД от пикета к измерительному устройству; снимают показания с ТЛД (поглощенную дозу ионизирующей радиации); результаты измерений изображают в виде планов, графиков или изолиний.
Недостатком способа является низкая производительность съемки и большая ошибка в нормировке показаний ТЛД за счет их разного времени закладки (и выемки) в шпуры на пикетах при флуктуирующем фоне.
Поставлена задача - повысить производительность, точность и достоверность картирования геофизических и геохимических полей на поверхности земли.
Задача решена следующим образом. Статистически значимое число миниатюрных датчиков физической величины рассеивается с летательного аппарата по картируемой поверхности земли, местоположение которых телеметрически привязывается к местности. Датчики экспонируются в геофизических и геохимических полях, с них с определенной периодичностью телеметрически одновременно снимается информация об измеряемой физической величине. Получаемая информация обрабатывается по специальному алгоритму в реальном масштабе времени и картографически отображается на носителе информации.
Реализация предложенного способа показана на примере картирования радиационной обстановки на исследуемом участке поверхности земли. С летательного аппарата (самолета, вертолета, дирижабля или мотодельтоплана) рассеиваются из расчета 103-104 штук на 1 км2 миниатюрные (объемом 0.25 см3) капсулы для детектирования ионизирующего излучения. Капсулы содержат ТЛД, фотоэлемент, систему нагрева ТЛД, приемопередатчик сигнала и систему питания. По сигналу контрольно-измерительного пункта наземного, водного, воздушного или космического базирования производится реперный нагрев всех ТЛД, предварительно облученных в стандартных лабораторных условиях, трансформация светового сигнала фотоэлементом в электрический сигнал, передача сигнала в эфир на индивидуальной для каждого ТЛД частоте, привязка местоположения каждого ТЛД с помощью телеметрических средств (например, JPS-приемника). ТЛД в процессе экспонирования накапливают дозу ионизирующего излучения (преимущественно фотонного), величина которой пропорциональна интенсивности термолюминесценции. По сигналу контрольно-измерительного пункта производится телеметрический съем информации одновременно со всех ТЛД об интегральной дозе с автоматической подготовкой каждого датчика к следующему циклу экспозиции и измерений. Обработка пространственного распределения дозового поля на поверхности земли при нерегулярном размещении пунктов исследования (местоположений ТЛД) производится в реальном масштабе времени, используя восстановление многомерной регрессии по методу минимизации риска (6). Картографирование производится по восстановленным зависимостям по эмпирическим данным посредством изображения в виде плана, графика или изодоз. Вся совокупность действий производится автоматически по программе с использованием персонального компьютера.
В настоящее время ОАО "Востокгазпром" (г. Томск) и Государственный комитет по охране окружающей среды Томской области при наличии соответствующей технической и технологической базы готовы применить предлагаемый способ для прогнозирования, поиска и разведки месторождений углеводородов и радиационного мониторинга в 30-километровой зоне Сибирского химического комбината (г. Северск).
Таким образом, технические и технологические особенности предложенного способа картирования геофизических и геохимических полей на поверхности земли обеспечивают получение следующих технико-экономических преимуществ:
повышается производительность картирования за счет автоматизации всех операций;
повышается точность измерений физической величины за счет одинаковой экспозиции всех датчиков и одновременного съема показаний со всех датчиков;
повышается достоверность картирования за счет существенного увеличения числа датчиков и пунктов исследования;
сокращаются затраты времени и средств на картирование труднодоступной местности.
Источники информации
1. Штольц В. , Бернхард Р. Дозиметрия ионизирующего излучения /Пер. с нем. - Рига: Зинатне, 1982. - с. 130-133.
2. Becker К. Environmental monitoring with TLD. - Nuki. Instr. Meth., 1972, 104 - C. 405.
3. Пруткина М.И., Шашкин В.Л. Справочник по радиометрической разведке и радиометрическому анализу. - М.: Атомиздат, 1975. - с. 143-144.
4. Application of thermoluminescence dozimetry in the exploration for oil and gas using сhinese. GR-200 UF (Mg, Cu, F) TLD/Z. Wang, D. Qin, G. Zhuang et al. // Radiation Protection Dozimetry. - Nuclear Technology Publishing, 1993. - Vol. 47 N 1/4. - p. 323-326.
5. Соболев И. С., Рихванов Л.П., Ляшенко Н.Г., Паровинчак М.С. Прогнозирование и поиски месторождений нефти и газа радиогеохимическими методами. - Геология нефти и газа, 1999, N 7-8. С. 19-24.
6. Вапник В.Н. Восстановление зависимости по эмпирическим данным. - М.: Наука, 1979. - с. 30-47.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВЫЯВЛЕНИЯ ПЛОЩАДЕЙ, ПЕРСПЕКТИВНЫХ ДЛЯ ПОИСКА И РАЗВЕДКИ МЕСТОРОЖДЕНИЙ УГЛЕВОДОРОДОВ | 1999 |
|
RU2169934C2 |
СПОСОБ ПОИСКА МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ | 2000 |
|
RU2180127C2 |
СПОСОБ ПОИСКА МЕСТОРОЖДЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2000 |
|
RU2176094C1 |
СПОСОБ ПОИСКА МЕСТОРОЖДЕНИЙ УГЛЕВОДОРОДОВ | 1999 |
|
RU2165633C1 |
СПОСОБ ГЕОХИМИЧЕСКИХ ПОИСКОВ ЗАЛЕЖЕЙ НЕФТИ И ГАЗА | 2011 |
|
RU2483334C1 |
СПОСОБ ОБНАРУЖЕНИЯ ГЕОЭНЕРГОАКТИВНЫХ ЗОН И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1999 |
|
RU2168748C2 |
СПОСОБ ВЫЯВЛЕНИЯ АЛМАЗОНОСНЫХ КИМБЕРЛИТОВЫХ ТРУБОК | 2019 |
|
RU2724288C1 |
СПОСОБ ИЗМЕРЕНИЯ УСТАНОВИВШЕЙСЯ РАВНОВЕСНОЙ ОБЪЕМНОЙ АКТИВНОСТИ РАДОНА В ПОЧВЕННОМ ВОЗДУХЕ | 2002 |
|
RU2212689C1 |
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ЭМАНИРОВАНИЯ РАДОНА-222 В ПОЧВОГРУНТАХ | 2003 |
|
RU2239207C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ПОТОКА РАДОНА С ПОВЕРХНОСТИ ЗЕМЛИ | 2002 |
|
RU2212688C1 |
Использование: для поиска месторождений полезных ископаемых и контроля качества окружающей среды, для разведки тел и залежей углеводородов и для мониторинга экологической обстановки природно-техногенного ландшафта. Статистически значимое число датчиков физической величины рассеивается с летательного аппарата по исследуемому участку земной поверхности. Их положение одновременно телеметрически привязывается к местности. Датчики экспонируются в геофизических и геохимических полях. С них с определенной периодичностью одновременно телеметрически снимается информация об измеряемой физической величине. Получаемая информация обрабатывается по специальному алгоритму в реальном масштабе времени и картографически отображается на носителе информации. Технический результат: повышение производительности картографических работ, повышение точности измерений физической величины, повышение достоверности картографического материала и сокращение затрат времени и средств на проведение картографических работ, в особенности в труднодоступной местности.
Способ картирования геофизических и геохимических полей на поверхности Земли, включающий размещение в пунктах исследования миниатюрных датчиков физической величины, топографическую привязку пунктов исследования, экспонирование датчиков в геофизическом и геохимическом поле, измерение полезного сигнала с датчиков, обработку эмпирических данных и картирование восстановленных зависимостей пространственного распределения физической величины, отличающийся тем, что статистически значимое число датчиков рассеивают с летательного аппарата по картируемой поверхности Земли, осуществляют телеметрически привязку координат местоположения каждого датчика, съем информации об измеряемой величине и обработку ее путем восстановления многомерной регрессии по методу минимизации риска в реальном масштабе времени.
СПОСОБ ОПЕРАТИВНОГО ИССЛЕДОВАНИЯ АТМОСФЕРЫ, ЗЕМНОЙ ПОВЕРХНОСТИ И ОКЕАНА | 1992 |
|
RU2041476C1 |
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ГЕОФИЗИЧЕСКИХ И ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК ОКЕАНОСФЕРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1991 |
|
RU2045747C1 |
ГЕОФИЗИЧЕСКАЯ СИСТЕМА СБОРА И ОБРАБОТКИ ИНФОРМАЦИИ | 1994 |
|
RU2091820C1 |
СПОСОБ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ СОСТОЯНИЯ СИСТЕМЫ ОКЕАН - АТМОСФЕРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2047874C1 |
Авторы
Даты
2001-06-10—Публикация
1999-11-23—Подача