ТОРОИДАЛЬНАЯ АНТЕННА (ВАРИАНТЫ) Российский патент 2001 года по МПК H01Q7/00 

Описание патента на изобретение RU2170996C2

Эта заявка является частичным продолжением заявки, имеющей порядковый номер 07/992970, поданной 15 декабря 1992 года и названной "Тороидальная антенна".

Изобретение относится к передающим и приемным антеннам и, в частности, к спиральным антеннам.

Эффективность антенны при частоте возбуждения находится в прямой зависимости от эффективной электрической длины, которая зависит от скорости распространения сигнала в соответствии с хорошо известным уравнением
λ = C/f,
где C - скорость света в свободном пространстве;
λ - длина волны;
f - частота.

Как известно, электрическая длина антенны должна быть равна длине волны, половине длине волны (симметричный вибратор) или одной четверти волны с экраном для минимизации всех, но действительных электрических сопротивлений антенны. Если эти требования не соблюдаются, то импеданс антенны изменяется, создавая стоячие волны на антенне и антенном фидере (линии передачи), увеличивая коэффициент стоячей волны, приводящие к потере мощности и получению меньшей энергии излучения.

Типовая вертикальная гибкая штыревая антенна (несимметричный вибратор) имеет ненаправленную диаграмму вертикальной поляризации и может быть сравнительно небольшой при высоких частотах, например при ультравысоких частотах. Однако при низких частотах размер становится проблематичным, приводя к очень длинным линиям и высоким мачтам антенн, используемым в низкочастотном и среднечастотном диапазонах. Качество дальней передачи в низкочастотных диапазонах является предпочтительным, но антенна, особенно направленная антенная решетка, может оказаться слишком большой, чтобы иметь компактный портативный передатчик. Даже при высоких частотах может быть выгодным иметь физически меньшую антенну, но обладающую такими же эффективностью и рабочими характеристиками, что и обычный несимметричный или симметричный вибратор.

В течение многих лет были использованы различные способы создания компактных антенн с характеристиками направленности, особенно с вертикальной поляризацией, которая, как было установлено, более эффективна (более высокая дальность действия), чем горизонтальная поляризация, по той причине, что антенны с горизонтальной поляризацией имеют больше потерь, связанных с поверхностными (земными) волнами.

С точки зрения характеристик направленности очевидно, что при использовании некоторых конфигураций антенн можно свести на нет магнитное поле, генерируемое в антенне при особой поляризации, и, в то же самое время, увеличить электрическое поле, которое нормально магнитному полю. Аналогичным образом, можно свести на нет электрическое поле и, в то же самое время, увеличить магнитное поле.

Принцип эквивалентности, который хорошо известен в области электромагнитной техники, гласит, что два источника, генерирующих одинаковое поле в данной области, должны быть эквивалентны и что может быть эквивалентность между источниками электрического тока и соответствующими источниками магнитного потока. Объяснение этого дано в разделе 3-5 работы Р.Ф. Харрингтона "Электромагнитные поля с временными гармониками" (1961). Для случая линейного элемента симметричного вибратора, который несет линейные электрические токи, эквивалентный источник магнитного поля выполняется круглым азимутальным кольцом магнитного потока (поля). Соленоид электрического тока является очевидным способом создания линейного магнитного потока (поля). Соленоид электрического тока, расположенный на тороидальной поверхности, обеспечивает создание необходимого круглого азимутального кольца магнитного потока (поля).

Тороидальная спиральная антенна состоит из спиральной проводящей обмотки на тороидальном сердечнике и создает характеристики излучения электромагнитной энергии в диаграмме направленности, которая аналогична диаграмме направленности электрической симметричной антенны, имеющей ось, которая нормальна плоскости тороидального сердечника и концентрична ему. Эффективный импеданс линии передачи спирального проводника тормозит (относительно скорости распространения в свободном пространстве) распространение волн от точки питания проводника спиральной конструкции. Уменьшенная скорость и круговой ток в этой конструкции делают возможным создание тороидальной антенны, имеющей размер порядка величины или меньше, чем размер соответствующего резонансного симметричного вибратора (линейная антенна). Тороидальная конструкция имеет низкий коэффициент формы, поскольку тороидальная спиральная конструкция физически меньше конструкции простого резонансного симметричного вибратора, но с аналогичными электрическими параметрами излучателя. Простая конфигурация однофазного фидера дает диаграмму направленности, сравнимую с диаграммой направленности полуволнового симметричного вибратора, но в намного меньшем корпусе.

В этом контексте в патентах США N 4622558 и N 4751515 описаны некоторые аспекты тороидальных антенн, как способы создания компактной антенны путем замены обычной линейной антенны саморезонансной конструкцией, которая генерирует излучение с вертикальной поляризацией, которое будет распространяться с меньшими потерями при прохождении над Землей. Для низких частот саморезонансные вертикальные линейные антенны, как указано выше, не имеют практического значения и саморезонансная конструкция, описываемая в этих патентах, до некоторой степени ослабевает проблему физически громоздких и электрически неэффективных вертикальных элементов при низких частотах.

В вышеуказанных патентах вначале описывается монофилярная тороидальная спираль как строительный блок для более сложных направленных антенн. Такие антенны могут содержать множество токопроводящих дорожек, питаемых сигналами, относительную фазу которых регулируют либо внешними пассивными цепями, либо с помощью специальных саморезонансных характеристик. В общем, в этих патентах описывается применение так называемых тороидальных обмоток со встречной намоткой для обеспечения вертикальной поляризации. Тороидальные обмотки со встречной намоткой, описываемые в этих патентах, являются обмотками необычной конструкции, имеющими только две клеммы, как описано в работе С. К. Бедсэлла и Т. Е. Эверхарта "Модифицированные спиральные цепи со встречной намоткой для высокомощных ламп бегущей волны", IRE Transaction on Electron Devices, октябрь, 1956 год, стр. 190. В патентах описаны различия между магнитными и электрическими полями/токами и показано, что физически наложенные друг на друга две монофилярные цепи, которые получены встречной намоткой относительно друг друга на тороид, могут быть использованы для создания антенны с двухканальным сигнальным входом, имеющей вертикальную поляризацию. Основу этой конструкции составляет линейная спираль, расчетные формулы для которой были впервые разработаны в 1953 году Кандоианом и Сихаком (как указано в патенте США N 4622558).

Предшествующий уровень техники, например, в вышеупомянутых патентах, определялся элементарными тороидальными вариантами осуществления, используемыми в качестве элементарных строительных блоков для более сложных конструкций, например, двухтороидальных конструкций, ориентированных для моделирования конструкций со встречной намоткой. Например, в вышеупомянутом патенте описан тор (сложный или простой), длина окружности которого, определяемая малой осью тора, должна быть равна целому числу длин направленных волн.

Простая тороидальная антенна (тороидальная антенна монофилярной конструкции) реагирует на компоненты электрического и магнитного поля входных (принимаемых) или выходных (передаваемых) сигналов. С другой стороны, многофилярные конструкции могут иметь одно направление шага или разное направление шага в отдельных обмотках на отдельных тороидах, позволяя обеспечивать направленность антенны и управление поляризацией. Одна из спиралей имеет кольцевую и мостовую конструкцию, которая обладает некоторыми, но не всеми качествами базовой конфигурации обмотки со встречной намоткой.

Как известно, линейный соленоид генерирует линейное магнитное поле вдоль своей центральной оси. Направление магнитного поля определяют с помощью "правила правой руки", в соответствии с которым, если пальцы правой руки согнуты внутрь к ладони и указывают направление кругового тока, то большой палец этой руки указывает направление магнитного поля. Если это правило применяют к обмотке соленоида с правой намоткой (как резьба в винте с правой резьбой), то электрический ток и результирующее магнитное поле имеют одно направление, а если к обмотке соленоида с левой намоткой, то электрический ток и результирующее магнитное поле имеют противоположные направления. Магнитное поле, генерируемое соленоидом, иногда называют магнитным потоком. Путем комбинирования обмоток с правой и левой намотками на одной оси для создания обмотки со встречной намоткой и подавая на отдельные элементы обмотки электрические токи, имеющие противоположные направления, эффективно уменьшают общий электрический ток до нуля, тогда как общее магнитное поле удваивается, по сравнению с магнитным полем одной обмотки.

Известно также, что симметричная электрическая линия передачи, питаемая источником синусоидального переменного тока и имеющая оконечную нагрузку, распространяет волны тока от источника к нагрузке. Эти волны отражаются в нагрузке и распространяются назад к источнику, общее распределение тока в линии передачи находят из суммы падающих и отраженных волн, которые могут быть охарактеризованы как стоячие волны на линии передачи. (Смотри, например, фиг. 13). В симметричной линии передачи токовые компоненты в каждом проводнике в любой данной точке вдоль линии равны по величине, но противоположны по полярности, что эквивалентно одновременному распространению противоположно поляризованных волн одинаковой величины вдоль отдельных проводников. Вдоль данного проводника, распространение положительного тока в одном направлении эквивалентно распространению отрицательного тока в противоположном направлении. Относительная фаза падающей и отраженной волн зависит от импеданса нагрузки ZL. Если I0 величина падающего тока, a I1 величина отраженного тока, то со ссылкой на фиг. 13 коэффициент отражения ρi определяют из уравнения

Поскольку падающий и отраженный токи проходят в противоположных направлениях, эквивалентный отраженный ток, I'1=-I1, дает величину отраженного тока относительно направления падающего тока I0.

Задачей настоящего изобретения является создание компактной антенны с вертикальной поляризацией, особенно пригодной в случаях применения длинных волн низкой частоты, но полезной при любой частоте, где требуется физически низкий профиль или не бросающийся в глаза модуль антенны.

Задачей настоящего изобретения является также создание антенны, которая имеет относительно низкий физический профиль по сравнению с антеннами известного уровня техники.

Дополнительной задачей настоящего изобретения является создание антенны физически низкого профиля, которая имеет более широкий диапазон связи по сравнению с антеннами известного уровня техники.

Другой задачей настоящего изобретения является создание антенны, которая имеет линейную поляризацию и физически низкий профиль вдоль направления поляризации.

Еще одной задачей настоящего изобретения является создание антенны, которая является, как правило, всенаправленной в направлениях, которые нормальны к направлению поляризации.

Другой дополнительной задачей настоящего изобретения является создание антенны, имеющей максимальный коэффициент направленного действия излучения в направлениях, нормальных направлению поляризации, и минимальный коэффициент направленного действия излучения в направлении поляризации.

Еще одной дополнительной задачей является создание антенны, имеющей упрощенную конфигурацию фидера, которая легко согласовывается с мощным источником радиочастотного сигнала.

Другой задачей настоящего изобретения является создание антенны, которая работает как можно в более широкой полосе рабочих частот относительно ее номинальной рабочей частоты.

В соответствии с настоящим изобретением тороидальная антенна имеет тороидальную поверхность и первую и вторую обмотки, которые содержат изолированные проводники, каждый из которых проходит как один замкнутый контур вокруг поверхности в разделенной на сегменты спиральной конфигурации. Тороид имеет четное число сегментов, например четыре сегмента, но, как правило, число сегментов больше или равно двум. Каждая часть одного из непрерывных проводников в данном сегменте является обмоткой со встречной намоткой относительно части того же проводника в смежных сегментах. Смежные сегменты одного проводника встречаются в узлах или соединениях (точках изменения направления намотки на обратное). Каждый из двух непрерывных проводников относительно друг друга в каждом сегменте тороида являются проводниками со встречной намоткой. Пара узлов (вход) расположена на границе между каждой смежной парой сегментов. От сегмента к сегменту полярность тока от источника униполярного сигнала меняется на обратное, благодаря соединениям на входе, по отношению к проводникам, с которыми соединены узлы входа. В соответствии с настоящим изобретением, проводники в соединениях, расположенных на каждом другом входе, разделены и разделенные концы заканчиваются согласованными чисто реактивными сопротивлениями, которые обеспечивают фазовый сдвиг на девяносто градусов соответствующих отражаемых токовых сигналов. Это обеспечивает одновременное аннулирование электрических токов и генерирование квазиоднородного азимутального магнитного потока (поля) в конструкции, создавая электромагнитное излучение с вертикальной поляризацией.

В соответствии с настоящим изобретением, проводящие рамки "полоидально" равномерно разнесены на поверхности вращения так, чтобы большая ось каждой рамки образовывала касательную к малой оси поверхности вращения. Относительно большой оси поверхности вращения, центральные концы всех рамок соединены вместе на второй клемме. Источник униполярного сигнала соединен с двумя клеммами и, поскольку рамки электрически соединены параллельно, магнитные поля, образуемые всеми рамками, находятся в одной фазе, генерируя, таким образом, квазиоднородное азимутальное магнитное поле, вызывающее вертикально поляризованное всенаправленное излучение.

В соответствии с настоящим изобретением, по мере увеличения числа рамок проводящие элементы становятся проводящей поверхностью вращения, на которой могут быть непрерывные или радиальные прорези. Рабочую частоту уменьшают введением либо последовательной индуктивности или параллельной емкости относительно клемм составной антенны.

В соответствии с настоящим изобретением, емкость может быть введена посредством размещения двух параллельных проводящих пластин, которые выполняют роль ступицы для проводящей поверхности вращения. Поверхность вращения прорезана в соединении с пластинами, причем одна пластина электрически соединена с одной стороной прорези, а другая пластина соединена с другой стороны прорези. Проводящая поверхность вращения может быть дополнительно прорезана для эмуляции ряда элементарных рамочных антенн. Полоса рабочих частот этой конструкции может быть увеличена, если радиус и форма поверхности вращения изменяются с соответствующим углом вращения.

Электромагнитная антенна, соответствующая настоящему изобретению, имеет многократно соединенную поверхность, имеющую большой радиус и малый радиус, причем большой радиус по меньшей мере равен малому радиусу; изолированное проводящее средство, проходящее в первой спиральной токопроводящей дорожке вокруг и поверх многократно соединенной поверхности с первым направлением шага спирали от первого узла ко второму узлу, причем это изолированное проводящее средство проходит также во второй спиральной токопроводящей дорожке вокруг и поверх многократно соединенной поверхности со вторым направлением шага спирали, которое противоположно первому направлению шага спирали, от второго узла к первому узлу так, чтобы первая и вторая спиральные токопроводящие дорожки по отношению друг к другу являются дорожками, имеющими встречное направление, и образовывают одну бесконечную токопроводящую дорожку вокруг и поверх многократно соединенной поверхности; и первую и вторую сигнальные клеммы, соответственно, электрически соединенные с первым и вторым узлами.

Электромагнитная антенна, соответствующая настоящему изобретению, имеет многократно соединенную поверхность, имеющую большой радиус и малый радиус, причем большой радиус по меньшей мере равен малому радиусу; изолированное проводящее средство, проходящее в первой конфигурации полоидально-периферийной обмотки вокруг и поверх многократно соединенной поверхности с первым направлением намотки от первого узла ко второму узлу, причем изолированное проводящее средство проходит также во второй конфигурации полоидально-периферийной обмотки вокруг и поверх многократно соединенной поверхности со вторым направлением намотки, которое противоположно первому направлению намотки, от второго узла к первому узлу так, что первая и вторая конфигурации полоидально-периферийной обмотки являются обмотками со встречной намоткой по отношению друг к другу и образовывают одну бесконечную токопроводящую дорожку вокруг и поверх многократно соединенной поверхности; и первую и вторую сигнальные клеммы, соответственно, электрически соединенные с первым и вторым узлами.

Электромагнитная антенна, соответствующая настоящему изобретению, имеет многократно соединенную поверхность, имеющую большой радиус и малый радиус, причем большой радиус по меньшей мере равен малому радиусу; изолированное проводящее средство, проходящее в первой, как правило, спиральной токопроводящей дорожке вокруг и поверх многократно соединенной поверхности с первым направлением шага спирали от первого узла ко второму узлу и от второго узла к третьему узлу, причем изолированное проводящее средство проходит также во второй, как правило, спиральной токопроводящей дорожке вокруг и поверх многократно соединенной поверхности со вторым направлением шага спирали, которое противоположно первому направлению шага спирали, от третьего узла к четвертому узлу и от четвертого узла к первому узлу так, что первая и вторая, как правило, спиральные токопроводящие дорожки проходят во встречном направлении относительно друг друга и образовывают одну бесконечную токопроводящую дорожку вокруг и поверх многократно соединенной поверхности; и первую и вторую сигнальные клеммы, соответственно, электрически соединенные со вторым и четвертым узлами.

Электромагнитная антенна, соответствующая настоящему изобретению, имеет многократно соединенную поверхность, имеющую большой радиус и малый радиус, причем большой радиус по меньшей мере равен малому радиусу; первое изолированное проводящее средство, проходящее в первой, как правило, спиральной токопроводящей дорожке вокруг и частично поверх многократно соединенной поверхности с первым направлением шага спирали от первого узла ко второму узлу и также проходящее во второй, как правило, спиральной токопроводящей дорожке вокруг и частично поверх многократно соединенной поверхности со вторым направлением шага спирали, которое противоположно первому направлению шага спирали, от второго узла к первому узлу так, что первая и вторая, как правило, спиральные токопроводящие дорожки образовывают первую бесконечную токопроводящую дорожку вокруг и по существу поверх многократно соединенной поверхности; второе изолированное проводящее средство, проходящее в третьей, как правило, спиральной токопроводящей дорожке вокруг и частично поверх многократно соединенной поверхности со вторым направлением шага спирали от третьего узла к четвертому узлу и проходящее также в четвертой, как правило, спиральной токопроводящей дорожке вокруг и частично поверх многократно соединенной поверхности с первым направлением шага спирали от четвертого узла к третьему узлу так, что третья и четвертая, как правило, спиральные токопроводящие дорожки образовывают вторую бесконечную токопроводящую дорожку вокруг и по существу поверх многократно соединенной поверхности, причем первая и третья, как правило, спиральные токопроводящие дорожки имеют встречное направление по отношению второй и четвертой, как правило, спиральным токопроводящим дорожкам, соответственно; первое сигнальное клеммное средство, электрически соединенное по меньшей мере с одним первым или вторым узлом; и второе сигнальное клеммное средство, электрически соединенное по меньшей мере с одним вторым или третьим узлом, причем первое и второе сигнальные клеммные средства предназначены для проведения сигнала электромагнитной антенны.

Способ передачи радиочастотного сигнала, соответствующий настоящему изобретению, посредством тороидальной антенны предусматривает подачу радиочастотного сигнала к первой и второй сигнальным клеммам для того, чтобы возбудить между ними электрические токи радиочастотного сигнала; проведение первого электрического тока в первом проводнике вокруг и поверх многократно соединенной поверхности, имеющей большой радиус и малый радиус, причем большой радиус по меньшей мере равен малому радиусу, а первый проводник имеет первое направление шага спирали от первой сигнальной клеммы ко второй сигнальной клемме; проведение второго электрического тока во втором проводнике вокруг и поверх многократно соединенной поверхности, причем второй проводник имеет второе направление шага спирали, которое противоположно первому направлению шага спирали, от второй сигнальной клеммы к первой сигнальной клемме; и использование первого и второго проводников, проходящих во встречном направлении относительно друг друга.

Настоящее изобретение создает компактную антенну с вертикальной поляризацией, имеющую более высокий коэффициент направленного действия для более высокого частотного спектра по сравнению с мостовой и кольцевой конфигурацией. Другие задачи, преимущества и элементы настоящего изобретения будут очевидными для квалифицированного в этой области техники специалиста.

Эти и другие задачи настоящего изобретения станут более понятными из приводимого ниже подробного описания изобретения со ссылкой на прилагаемые сопроводительные чертежи.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 - схематическое изображение четырехсегментной спиральной антенны, соответствующей настоящему изобретению.

Фиг. 2 - увеличенное изображение обмоток, показанных на фиг. 1.

Фиг. 3 - увеличенное изображение обмоток в альтернативном варианте осуществления настоящего изобретения.

Фиг. 4 - схематическое изображение двухсегментной (состоящей из двух частей) спиральной антенны, соответствующей варианту осуществления настоящего изобретения.

Фиг. 5 - спиральная антенна с двумя входами, имеющая регулируемые импедансы в точках изменения направления намотки на обратное.

Фиг. 6 - диаграмма поля, иллюстрирующая диаграмму направленности по напряженности поля, для антенны, показанной на фиг. 1.

Фиг. фиг. 7-9 - диаграммы электрического и магнитного полей относительно тороидальных узловых положений для антенны, показанной на фиг. 1.

Фиг. фиг. 10-12 - диаграммы электрического и магнитного поля относительно тороидальных положений между узлами для антенны, показанной на фиг. 4.

Фиг. 13 - известная эквивалентная цепь для линии передачи с оконечной нагрузкой.

Фиг. 14 - увеличенное изображение полоидальных обмоток на тороиде, соответствующем настоящему изобретению, для обеспечения возможности настройки, улучшения подавления электрического поля и упрощения конструкции.

Фиг. 15 - упрощенная структурная схема варианта осуществления четырехквадрантной антенны, соответствующей настоящему изобретению, с элементами согласования по сопротивлению и фазе.

Фиг. 16 - увеличенное изображение обмоток антенны, соответствующей настоящему изобретению, с первичной и вторичной катушками для согласования сопротивлений, соединяющими обмотки.

Фиг. 17 - эквивалентная цепь для антенны, соответствующей настоящему изобретению, иллюстрирующая средства настройки.

Фиг. 18 и фиг. 19 - схематические изображения части тороидальной антенны, в которой для целей настройки, использованы закрытые металлические фольговые настроечные элементы вокруг тороида, как показано на фиг. 17.

Фиг. 20 - схематическое изображение антенны, соответствующей настоящему изобретению, в которой использован настроечный конденсатор, расположенный между противоположными узлами.

Фиг. 21 - эквивалентная цепь альтернативного способа настройки квадрантной антенны, соответствующей настоящему изобретению.

Фиг. 22 - антенна, соответствующая настоящему изобретению, с проводящей фольговой оберткой (на тороиде) для настройки, как показано на фиг. 21.

Фиг. 23 - сечение по линии 23-23, показанной на фиг. 24.

Фиг. 24 - изометрическое изображение антенны, соответствующей настоящему изобретению, покрытой фольгой.

Фиг. 25 - альтернативный вариант осуществления антенны, соответствующей настоящему изобретению, с "осевой симметрией".

Фиг. 26 - функциональная блок-схема ЧМ-передатчика, в котором использовано устройство для параметрической настройки, управляемое модулятором.

Фиг. 27 - всенаправленная полоидальная рамочная антенна.

Фиг. 28 - вид сбоку на одну рамку в антенне, показанной на фиг. 27.

Фиг. 29 - эквивалентная цепь для рамочной антенны.

Фиг. 30 - вид сбоку на квадратную рамочную антенну.

Фиг. 31 - изометрическое изображение цилиндрической рамочной антенны, соответствующей настоящему изобретению, с частичным вырезом.

Фиг. 32 - сечение по линии 32-32, показанной на фиг. 31, на котором иллюстрируется диаграмма тока в обмотках.

Фиг. 33 - частичное изображение тороида с прорезями для настройки и для эмуляции полоидальной рамочной конфигурации, соответствующей настоящему изобретению.

Фиг. 34 - тороидальная антенна с настроечным контуром тороидального сердечника.

Фиг. 35 - эквивалентная цепь для антенны, показанной на фиг. 34.

Фиг. 36 - вырез тороидальной антенны с центральным устройством для емкостной настройки, соответствующим настоящему изобретению.

Фиг. 37 - вырез альтернативного варианта осуществления антенны, показанной на фиг. 36, с полоидальными обмотками.

Фиг. 38 - альтернативный вариант осуществления антенны с настроечным конденсатором переменной емкости.

Фиг. 39 - вид сверху квадратной тороидальной антенны, соответствующей настоящему изобретению, для увеличения полосы рабочих частот антенны и с прорезями для настройки или для эмуляции полоидальной рамочной конфигурации.

Фиг. 40 - сечение по линии 40-40, показанной на фиг. 39.

Фиг. 41 - вид сверху альтернативного варианта осуществления антенны, показанной на фиг. 39, имеющей шесть боковых поверхностей с прорезями для настройки или для эмуляции полоидальной конфигурации.

Фиг. 42 - сечение по линии 42-42, показанной на фиг. 41.

Фиг. 43 - известная линейная спираль.

Фиг. 44 - известная аппроксимированная линейная спираль.

Фиг. 45 - сложная эквивалентная конфигурация, показанная на фиг. 45, при допущении, что магнитное поле однородно или квазиоднородно по длине спирали.

Фиг. 46 - тороидальная спиральная антенна со встречной намоткой, имеющая внешнюю рамку, сдвиг по фазе и линейное регулирование.

Фиг. 47 - известные эквивалентные цепи правого и левого направления и соответствующие электрические и магнитные поля.

Фиг. 48 - схематическая иллюстрация антенны последовательного питания, соответствующей варианту осуществления настоящего изобретения.

Фиг. фиг. 49-51 - диаграммы электрических и магнитных полей относительно тороидальных узловых положений для антенны, показанной на фиг. 48.

Фиг. 52 - схематическая иллюстрация антенны последовательного питания, соответствующей другому варианту осуществления настоящего изобретения.

Фиг. фиг. 53-55 - диаграммы электрических и магнитных полей относительно тороидальных узловых положений для антенны, показанной на фиг. 52.

Фиг. 56 - схематическая иллюстрация антенны параллельного питания, соответствующей другому варианту осуществления настоящего изобретения.

Фиг. фиг. 57-59 - диаграммы электрических и магнитных полей относительно тороидальных узловых положений для антенны, показанной на фиг. 56.

Фиг. 60 - схематическая иллюстрация антенны параллельного питания, соответствующей другому варианту осуществления настоящего изобретения.

Фиг. 61 - структурная схема интерфейса для антенны, показанной на фиг. 61, с элементом согласования сопротивлений и фазы, соответствующей другому варианту осуществления настоящего изобретения.

Фиг. 62 - типичная угломестная диаграмма направленности излучения для антенн, показанных на фиг. фиг. 48, 52 или 56.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Как следует из фиг. 1, антенна 10 содержит две электрически изолированные замкнутые проводящие контуры (обмотки) W1 и W2, которые проходят вокруг тороида через 4 (n=4) равноугольных сегмента 12. На эти обмотки подают радиочастотный электрический сигнал от двух штырей (клемм) S1 и S2. В каждом сегменте обмотка имеет встречную намотку, то есть обмотка W1 может иметь правую намотку, как показано сплошными линиями, а обмотка W2 может иметь левую намотку, как показано пунктирными линиями. Предполагается, что каждый проводящий контур имеет одинаковое число витков спирали вокруг тороида, определяемое посредством описываемых ниже уравнений. В соединении или узле 14 каждая обмотка изменяет направление намотки на обратное (как показано в каждом вырыве). Сигнальные клеммы S1 и S2 соединены с двумя узлами и каждая пара таких узлов заканчивается "входом". В этом описании каждая пара узлов в каждом из четырех входов обозначена а1 и a2, b1 и b2, с1 и c2, d1 и d2. На фиг. 1, например, имеется четыре входа, а, b, с и d. Относительно малой оси тороида в данном входе узлы могут быть расположены в любой угловой зависимости друг относительно друга и тора, но все узлы в этой конструкции будут соответствовать этой одной угловой зависимости, если число витков в каждом сегменте равно целому числу. Например, на фиг. 2 показаны диаметрально противоположные узлы, тогда, как на фиг. 3 показаны перекрывающиеся узлы. Узлы перекрывают друг друга, но от входа к входу соединения соответствующих узлов с клеммами или штырями S1 и S2 изменяются на противоположные, как показано, давая в результате конфигурацию, в которой диаметрально противоположные сегменты имеют аналогичные параллельные соединения, причем каждая обмотка (противоположных сегментов) имеет одинаковое направление (намотки). В результате этого, в каждом сегменте токи в обмотках противоположны, но направление меняется на обратное вместе с направлением (намотки) обмотки от сегмента к сегменту. Можно увеличивать или уменьшать сегменты пока их имеется четное число, но должно быть очевидным, что узлы должны соответствовать зависимости эффективной длины линии передачи для тороида (принимающей во внимание изменение скорости распространения вследствие спиральной обмотки и рабочей частоты). Путем чередования местоположений узлов можно регулировать поляризацию и направленность антенны, особенно с внешним импедансом 16, как показано на фиг. 5. Было установлено, что четырехсегментная конфигурация, описываемая в этой заявке, дает вертикально поляризованную всенаправленную диаграмму направленности по напряженности поля, имеющую угол θ возвышения от оси антенны и множество электромагнитных волн E1, E2, которые генерируются антенной, как иллюстрируется на фиг. 6.

Хотя на фиг. 1 иллюстрируется вариант осуществления с четырьмя сегментами, а на фиг. 4 - с двумя сегментами, должно быть очевидно, что настоящее изобретение может быть осуществлено с любым четным числом сегментов, например, с шестью сегментами. Одним преимуществом увеличения числа сегментов будет увеличение излучаемой мощности и уменьшение сложного импеданса питаемых входов антенны и в соответствии с этим упрощение задачи согласования импеданса на сигнальных клеммах со сложным импедансом сигнальных входов на антенне. Преимущество уменьшения числа сегментов заключается в уменьшении общего размера антенны.

Хотя основной задачей настоящего изобретения является обеспечение вертикально поляризованной всенаправленной диаграммы излучения, как иллюстрируется на фиг. 6, до сих пор считали, благодаря использованию принципа эквивалентности электромагнитных систем и понимания природы элементарного электрического симметричного вибратора, что этого можно достичь путем создания азимутального круглого кольца магнитного потока или потока. По этой причине, антенна будет описываться с точки зрения ее способности давать такое распределение магнитного тока (поля). В соответствии с фиг. 1, на сигнальные клеммы S1 и S2 подают симметричный сигнал. Затем этот сигнал поступает к тороидальным спиральным питаемым входам через d через посредство симметричных линий передач. Как известно из теории симметричных линий передач, в любой данной точке вдоль линии передачи токи в двух проводниках смещены по фазе на 180 градусов. При достижении узла, с которым соединяется линия передачи, электрический сигнал продолжает проходить как бегущая волна в обоих направлениях от каждого узла. Такие распределения токов вдоль их направления показаны на фиг. 7-9 для четырехсегментной, а на фиг. 10-12 для двухсегментной антенны, соответственно, на которых иллюстрируются диаграммы электрического и магнитного полей на входах или узлах, где J относится к электрическому, а М относится к магнитному потоку. Анализ допускает, что частота сигнала отрегулирована в соответствии с антенной так, чтобы длина окружности электрической структуры была равной длине волны, и чтобы распределение тока на этой конструкции было синусоидальным при величине, которая является аппроксимацией. Тороидальные спиральные обмотки (со встречной намоткой) конструкции антенны были линией передачи, однако они образуют линию передачи, характеризующуюся утечками вследствие излучения антенны.

На диаграммах фиг. 7 и 10 показано распределение электрических токов с полярностью, относящейся к направлению прохождения от узлов, из которых эти сигналы генерируются. На диаграммах фиг. 8 и 11 показано подобное распределение токов, относящееся к общему направлению против часовой стрелки, принимая во внимание, что полярность тока изменяется относительно направления. Фиг. 9 и фиг. 12 иллюстрируют соответствующее распределение магнитного потока, при использовании принципов, иллюстрируемых на фиг. 1. На фиг. 8 и 11 показано, что общее распределение электрического тока на тороидальной спиральной конструкции аннулируется. Но, как показано на фиг. 9 и фиг. 12, общее распределение магнитного потока увеличивается. Таким образом, эти сигналы в квадратурной сумме дают квазиоднородное азимутальное распределение токов.

Для осуществления настоящего изобретения должны быть удовлетворены пять основных требований: 1) антенна должна быть отрегулирована до соответствующей частоты сигнала, т.е. при этой частоте сигнала электрическая окружная длина каждого сегмента тороидальной спиральной конструкции должна быть равна одной четверти длины волны; 2) сигналы на каждом узле должны быть одинаковой амплитуды; 3) сигналы на каждом входе должны находиться в одной фазе; 4) сигналы, прикладываемые к клеммам S1 и S2, должны быть симметричными, и 5) импеданс сегментов линии передачи, соединяющей клеммы S1 и S2 с входами сигналов на тороидальной спиральной конструкции, должен быть согласован с соответствующими нагрузками на каждом конце сегмента линии передачи так, чтобы исключить отражение сигналов.

При расчете размеров антенны, использовали следующие параметры, приведенные ниже.

а = большая ось тора;
b = малая ось тора;
D = 2•b = малый диаметр тора;
N = число витков спирального проводника, намотанного на тор;
n = число витков на единицу длины;
Vg = величина, обратная коэффициенту замедления;
a(норм:) = a/λ = a;
b(норм:) = b/λ = b;
Lw = нормированная длина проводника;
λ g = длина волны, полученная при учете величины, обратной коэффициенту замедления, и λ для свободного пространства;
m = число сегментов антенны.

Тороидальная спиральная антенна находится при "резонансной" частоте, определяемой следующими тремя физическими параметрами:
а = большой радиус тора;
b = малый радиус тора;
N = число витков спирального проводника, намотанного на тор;
V = скорость ведомой (направляемой) волны.

Было установлено, что число независимых параметров может быть дополнительно уменьшено до двух, Vg и N, путем нормирования параметров относительно длины волны λ в свободном пространстве и переписывания уравнения в виде функций a(Vg) и b(Vg,N). То есть эта физическая конструкция будет иметь соответствующую резонансную частоту при длине волны λ в свободном пространстве. Для четырехсегментной антенны резонанс определяют как резонансную частоту, когда большая ось окружности тора равна длине волны. В общем, резонансная рабочая частота является резонансной частотой, при которой стоячая волна образуется на конструкции антенны, для которой каждый сегмент антенны имеет 1/4 длины ведомой волны (т.е. каждый узел 12, показанный на фиг. 1, находится на 1/4 длины ведомой волны). При этом анализе допускается, что конструкция имеет большую окружность равную длине одной волны, и что фидеры и обмотки имеют соответствующую конфигурацию.

Величина, обратная коэффициенту замедления, для антенны определяется из формулы

Физические размеры тора могут быть нормированы относительно длин волн в свободном пространстве следующим образом

В работе А.Г.Кандоиана и В.Сихака "Спиральные антенны и цепи, настраиваемые в широком частотном диапазоне", Convention Record of I.R.E., 1953 National Convention, Часть 2 - Антенны и связь, стр. 42-47 приведена формула, которая позволяет предсказывать величину, обратную коэффициенту замедления для коаксиальной линии с монофилярным линейным спиральным внутренним проводником. В патентах США N 4622558 и N 4751515 эта формула была преобразована для тороидальной спиральной конфигурации путем замены геометрических параметров. В результате было получено следующее уравнение

Хотя эта формула выведена для другого варианта осуществления, чем вариант, описываемый в этой заявке, она при небольшой эмпирической модификации оказалась полезной для приближенного описания настоящего изобретения с целью разработки конструкции для достижения данной резонансной частоты.

Подстановка (1) и (2) в уравнение (3) и упрощение позволяет получить уравнение

Из уравнения (1) и (2) следует, что величина, обратная коэффициенту замедления, и нормированный большой радиус прямо пропорциональны друг другу

Таким образом, уравнения (4) и (5) могут быть переписаны для получения нормированных большого и малого радиусов тора в зависимости от Vg и N


при этом

Уравнения (2), (6), (7), (8) обеспечивают основные, независимые от частоты, конструкционные соотношения. Они могут быть использованы для определения физического размера антенны для данной рабочей частоты, величины, обратной коэффициенту замедления, и числа витков или для решения обратной задачи определения рабочей частоты для данной антенны определенных размеров, имеющей данное число спиральных витков.

Дополнительное ограничение, основанное на указанной работе Кандоиана и Сихака, может быть сформулировано с точки зрения нормированных параметров следующим образом

Преобразование этого уравнения относительно b и подстановка уравнения (7) дает

Преобразование уравнения (10) для разделения переменных дает

Решение этого уравнения второй степени дает

Из уравнений (6) и (8) получаем также

Ограничение (13), которое выведено из ограничения (8), представляется более строгим, чем ограничение (12).

Нормированная длина спирального проводника может быть представлена как

Длина провода станет минимальной, если a=b и для минимального числа витков N, если а=b, уравнение (6) может быть переписано как

и таким образом

Для четырехсегментной антенны m=4 получили

Подстановка уравнения (15) в уравнение (10) дает

Таким образом, для минимальной длины провода, минимального числа витков N=4 для четырехсегментной антенны может быть получено уравнение

В общем, длина провода будет наименьшей для небольших численных значений величин обратных коэффициенту замедления, таким образом, уравнение (18) может быть аппроксимировано как

которое при подстановке в уравнение (16) дает

Таким образом, для всех антенн кроме двухсегментных, уравнения Кандоиана и Сихака предсказывают, что общая длина провода на проводник будет больше длины волны в свободном пространстве.

Пользуясь этими уравнениями, можно получить тороид, обладающий эффективными характеристиками передачи полуволновой линейной антенны. Опыт работы с тороидальными спиральными антеннами со встречной намоткой, разработанными в соответствии с настоящим изобретением, показал, что резонансная частота данной конструкции отличается от резонансной частоты, которую можно было бы предсказать на основе уравнений (2), (6) и (7), когда число витков N, используемое в расчетах, в два или три раза больше действительного числа витков одного из двух проводников. В некоторых случаях, действительная рабочая частота лучше всего коррелируется с длиной провода. Для данной длины тороидального спирального проводника Lw (a, b, N), эта длина будет равна длине электромагнитной волны в свободном пространстве, частота которой может быть представлена как

В некоторых случаях, измеренная резонансная частота была лучше всего предсказана либо 0,75•fw(a,b,N), либо fw(a,b,2N). Например, при частоте 106 МГц линейная полуволновая антенна имела бы длину 1415 мм (55,7 дюйма), при допущении, что величина, обратная коэффициенту замедления, равна 1,0, тогда, как конструкция тороида, соответствующая настоящему изобретению, будет иметь следующие размеры.

а = 6,955 см (2,738 дюйма)
b = 1,430 см (0,563 дюйма)
N = 16 витков проволоки #16
m = 4 сегмента
Для этого варианта осуществления тороидальной конструкции, уравнения (2), (6) и (7) предсказывают резонансную частоту 311,5 МГц и Vg=0,454 при N= 16 и 166,7 МГц при N=32. При измеренной рабочей частоте Vg=0,154 и в соответствии с уравнением (4) числовое значение N для ее сохранения должно составлять 51 (витков), которое в 3,2 раза больше действительного значения для каждого проводника. В этом случае fw(a,b,2N)=103,2 МГц.

В варианте осуществления настоящего изобретения, показанного на фиг. 5, соединения на двух входах а иск входному сигналу разорваны также, как проводники в соответствующих узлах. Остальные четыре открытых входа а11-а21, а12-а22, с11-с21 и с12-с22 имеют оконечную реактивную катушку Z, импеданс которой согласован с волновым сопротивлением сегментов линии передачи, образованных посредством тороидальных спиральных проводниковых пар со встречной намоткой. Отражения сигналов из этих оконечных реактивных катушек обеспечивают отражение (см. фиг. 13) сигнала, который находится сдвинутым по фазе на 90 градусов относительно падающих сигналов, так что распределения тока на тороидальном спиральном проводнике аналогичны распределениям тока, характерным для варианта осуществления, показанного на фиг. 1, обеспечивая, таким образом, такую же диаграмму излучения, но с меньшим числом питающих соединений между сигнальными клеммами и сигнальными входами, что упрощает регулировку и настройку конструкции антенны.

Тороидальные проводники со встречной намоткой не обязательно могут быть спиральными, чтобы соответствовать сущности настоящего изобретения. На фиг. 14 показано одно такое альтернативное устройство (полоидально-периферийная конфигурация обмотки), в соответствии с которым спираль, образуемая каждым из двух изолированных проводников W1, W2, разделена на серию несоединенных полоидальных рамок 14.1. Межсоединения образуют относительно большой оси круглые дуги. Эти два отдельных проводника везде параллельны, давая возможность этому устройству обеспечивать более точное аннулирование тороидальных компонентов электрического тока и более точное направление компонентов магнитного потока, генерируемых полоидальными рамками. Этот вариант осуществления отличается более высокой межпроводниковой емкостью, которая способствует, как подтверждено экспериментально, уменьшению резонансной частоты конструкции. Резонансная частота этого варианта осуществления может быть отрегулирована посредством регулировки промежутка между параллельными проводниками W1 и W2, регулировкой относительного угла этих двух проводников со встречной намоткой относительно друг друга и относительно большой или малой оси тора.

Для обеспечения наилучшего варианта осуществления настоящего изобретения, сигналы в каждом из сигнальных входов S1, S2 должны быть симметричными относительно друг друга (т. е. быть равны по величине и - на 180 градусов отличаться по фазе). Сегменты линии передачи питающего сигнала должны быть согласованы на обоих концах, т.е. в общем соединении сигнальной клеммы и в каждом из отдельных сигнальных входов на тороидальной спиральной конструкции со встречной намоткой. Дефекты обмоток со встречной намоткой, формы сердечника, на который они намотаны, или других элементов могут вызвать отклонения импеданса на сигнальных входах. Такие отклонения могут потребовать компенсации, например, как показано на фиг. 15, чтобы электрические токи, входящие в конструкцию антенны, были симметричными по величине и по фазе для обеспечения возможности наиболее полного аннулирования тороидальных компонентов электрического тока, как описано ниже. В самом простом случае, если импеданс сигнальных клемм (Z0) составляет, как правило, 50 Ом, а импеданс на сигнальных входах составляет Z1-m•Z0, то в соответствии с настоящим изобретением конструкция будет содержать m питающих линий одинаковой длины и импеданса Z1, чтобы параллельная комбинация этих импедансов на сигнальных клеммах имела величину Z0. Если импеданс на сигнальных клеммах равен величине Z1, отличающейся от вышеуказанной, то настоящее изобретение может быть осуществлено с четвертьволновыми питающими линиями, причем длина каждой из них равна четверти волны, а волновое сопротивление Z1=Z0Z1. Как правило, любые импедансы могут быть согласованы посредством двухшлейфового настроечного устройства, составленного из элементов линии передачи. Как показано на фиг. 16, питающие линии от сигнальной клеммы могут быть индуктивно связаны с сигнальными входами. Помимо обеспечения возможности согласования импеданса сигнальных входов с питающей линией, такое устройство действует также как симметрирующее устройство для преобразования несимметричного сигнала на питающей клемме в симметричный сигнал на сигнальных входах в тороидальной спиральной конструкции со встречной намоткой. При таком способе индуктивной связи коэффициент связи между подачей сигнала и конструкцией антенны может быть отрегулирован так, чтобы давать конструкции антенны возможность свободно резонировать. Без отклонения от сущности настоящего изобретения могут быть также использованы другие средства согласования и симметрирования импеданса, фазы и амплитуды, известные квалифицированным специалистам в этой области техники.

Конструкция антенны может быть настроена разными способами. В наилучшем варианте осуществления средства настройки должны быть равномерно распределены по конструкции так, чтобы сохранять равномерный азимутальный магнитный кольцевой поток. На фиг. 17 иллюстрируется применение полоидальных фольговых конструкций 18.1, 19.1 (см. фиг. 18 и фиг. 19), окружающих два изолированных проводника, предназначенных для модификации емкостной связи между двумя спиральными проводниками. Полоидные настроечные элементы могут быть разомкнутыми или замкнутыми контурами, причем последний обеспечивает дополнительный компонент индуктивной связи. На фиг. 20 иллюстрируется средство симметрирования сигналов на конструкции антенны посредством емкостной связи разных узлов и, в частности, диаметрально противоположных узлов на одном проводнике. Емкостная связь, использующая переменный конденсатор C1, может быть азимутально непрерывной при применении проводящей фольги или сетки (непрерывных или сегментированных), которые параллельны поверхности тороидального сердечника. Варианты осуществления, показанные на фиг. 23 и фиг. 25, являются результатом расширения вариантов осуществления, иллюстрируемых на фиг. 17-21, в которых вся тороидальная спиральная конструкция HS окружена экраном 22.1, который везде концентричен. В идеальном случае, тороидальная спиральная конструкция HS генерирует строго тороидальные магнитные поля, которые параллельны такому экрану, так что для достаточно тонкой фольги для данной проводимости и рабочей частоты электромагнитные граничные условия удовлетворяются, обеспечивая возможность распространения электромагнитного поля вне конструкции. Как описано в этой заявке, для настройки может быть добавлена прорезь (полоидальная) 25.1.

Конструкция тороидальной спиральной антенны со встречной намоткой является резонатором относительно высокой добротности, который может служить в качестве комбинированного настроечного элемента и излучателя для ЧМ-передатчика, как показано на фиг. 26, имеющего генератор 26.1 и усилитель 26.2 при электрическом напряжении антенны 10. Модуляция может быть осуществлена через параметрический настроечный элемент 26.3, управляемый модулятором 26.4. Частоту F1 передачи регулируют посредством электронного регулятора емкостного или индуктивного настроечного элемента, соединенного с конструкцией антенны, либо путем прямой модификации реактивного сопротивления, либо подключением последовательных постоянных реактивных элементов (описанных ранее) так, чтобы регулировать реактивное сопротивление, которое связано с конструкцией, и, следовательно, регулировать собственную частоту тороидальной спиральной конструкции со встречной намоткой.

В другом варианте осуществления настоящего изобретения, показанном на фиг. 27, тороидальные спиральные проводники предшествующих вариантов осуществления заменены рядом из N полоидальных рамок 27.1, равномерно азимутально разнесенных вокруг тороида. Центральные части каждой рамки (относительно большого радиуса тора) на сигнальной клемме S1 соединены вместе, тогда, как остальные внешние части каждой рамки соединены вместе на сигнальной клемме S2. Отдельные рамки, будучи идентичными одна другой, могут иметь произвольную форму, причем на фиг. 28 иллюстрируется рамка круглой формы, а на фиг. 30 - рамка прямоугольной формы. На фиг. 29 показана эквивалентная электрическая цепь для этой конфигурации. Каждый из отдельных рамочных сегментов действует как обычная рамочная антенна. В составной конструкции, отдельные рамки питаются параллельно так, чтобы компоненты результирующего магнитного поля, генерируемые в соответствии с этим в каждой рамке, были по фазе и азимутально направлены относительно тороида так, чтобы в результате было образовано азимутально однородное кольцо магнитного потока. Для сравнения, в тороидальной спиральной антенне со встречной намоткой поля от тороидальных компонентов спиральных проводников со встречной намоткой аннулированы так, как если бы этих компонентов не существовало, оставляя только вклады от полоидальных компонентов проводников.

Таким образом, в варианте осуществления, показанном на фиг. 27, из физической конструкции исключают тороидальные компоненты, а не аннулируют соответственно генерируемые электрические поля. Увеличение числа полоидальных рамок в варианте осуществления, показанном на фиг. 27, приводит к созданию вариантов осуществления, иллюстрируемых на фиг. 31 и фиг. 33 для рамок прямоугольного и круглого профиля, соответственно. Отдельные рамки становятся непрерывными проводящими поверхностями, которые могут иметь или могут не иметь радиальных плоских прорезей для эмуляции многорамочного варианта осуществления. Такие конструкции создают азимутальные магнитные кольцевые потоки (поля), которые везде параллельны проводящей тороидальной поверхности и соответствующие электрические поля которых везде перпендикулярны проводящей тороидальной поверхности. Таким образом, электромагнитные волны, генерируемые этой конструкцией, могут
распространяться через проводящую поверхность при условии, что эта поверхность достаточно тонка, для обеспечения непрерывного проводника. Такое устройство будет иметь эффект кольца электрических диполей при перемещении заряда между верхней и нижней сторонами конструкции, т.е. параллельно направлению большой оси тороида.

Недостатком вариантов осуществления, показанных на фиг. 27 и фиг. 31, является относительно большой размер вследствие необходимости того, чтобы окружность рамки была порядка половины длины волны резонансного режима работы. Однако размер рамки может быть уменьшен путем введения в конструкции, показанные на фиг. 27 и фиг. 31, последовательного индуктивного сопротивления или параллельного реактивного сопротивления. На фиг. 34 иллюстрируется введение последовательного индуктивного сопротивления путем образования центрального проводника варианта осуществления, показанного на фиг. 31, в катушке индуктивности 35.1. На фиг. 36 иллюстрируется введение параллельной емкости 36.1 в вариант осуществления, показанный на фиг. 31. Параллельный конденсатор выполнен в виде центрального проводника 36.1 для тороидальной конструкции TS, которая также служит для обеспечения механической опоры как для тороидального сердечника, так и для центрального электрического соединителя 36.3, посредством которого сигнал на клеммах S1 и S2 подают к конструкции антенны. Параллельный конденсатор и конструкционный проводник образованы из двух проводящих пластин Р1 и Р2, выполненных из меди, алюминия или какого-либо другого цветного металла и разделенных, например, воздухом, тефлоном, полиэтиленом или другим диэлектриком 36.4, обладающим низкими диэлектрическими потерями. Соединитель 36.3 с клеммами S1 и S2 электрически соединены с параллельными пластинами Р1 и Р2, соответственно, в их центральной части, которые в свою очередь электрически соединены с соответствующими боковыми поверхностями тороидальной прорези на внутренней части проводящей тороидальной поверхности TS. Сигнальный ток проходит в радиальном направлении наружу от соединителя 36.3 через пластины Р1 и Р2 и вокруг проводящей тороидальной поверхности TS. Введение емкости, предусматриваемое посредством проводящих пластин Р1 и Р2, дает возможность полоидальной окружности тороидальной поверхности TS быть значительно меньше, чем бы иначе потребовалось для аналогичного состояния резонанса посредством рамочной антенны, работающей при аналогичной частоте.

Емкостной настроечный элемент, показанный на фиг. 36, может быть использован в сочетании с индуктивными рамками, показанными на фиг. 27, для образования варианта осуществления, показанного на фиг. 37, конструкция которого может быть проиллюстрирована посредством эквивалентной цепи, показанной на фиг. 38, в которой вся емкость образована с помощью плоского конденсатора (конденсатора с пластинчатыми обкладками), а вся индуктивность - с помощью проволочных рамок. Формулы для емкости плоского конденсатора и проволочного индуктора даны в книге Говарда В. Сэмса под редакцией Е.С.Джордана "Справочные данные для радиоинженеров", седьмое издание, 1986 год, стр.6-13


где C = емкость, пФ,
Lwire=индуктивность, микро Генри,
A=площадь обкладки, кв.дюйм,
t = расстояние между обкладками, дюйм,
N = число обкладок,
а = средний радиус проволочной рамки, дюйм,
d = диаметр проволоки, дюйм,
εr = относительная диэлектрическая проницаемость.

Резонансная частота эквивалентной параллельной цепи, при допущении, что общее число обкладок равно N, определяется как


Для тороида с малым диаметром = 7,00 см (2,755 дюйма) и большим внутренним диаметром (диаметр обкладок конденсатора) = 10,28 см (4,046 дюйма) для N=24 рамок шестнадцати проволочного провода (d=0,16 см (0,063 дюйма)) с расстоянием между обкладками t=0,358 см (0,141 дюйма) получена расчетная резонансная частота 156,5 МГц.

Для варианта осуществления, показанного на фиг. 38, индуктивность одновитковых тороидальных рамок приблизительно равна

где μ0 = проницаемость свободного пространства = 400 π нН/м, а и b - большой и малый радиусы, соответственно. Емкость плоского конденсатора, образованного в виде ступицы тора, определяется из уравнения

где ε0 = проницаемость свободного пространства=8,854 пФ/м.

Подстановка уравнений (27) и (28) в уравнения (25) и 26) дает

Уравнение (29) позволяет предсказать, что тороидальная конфигурация, иллюстрируемая выше, за исключением непрерывной проводящей поверхности, будет иметь одинаковую резонансную частоту 156,5 МГц, если расстояние между обкладками увеличивается до 1,01 см (0,397 дюйма).

Варианты осуществления, показанные на фиг. 36-38, могут быть настроены путем регулировки всего расстояния между пластинами или расстояния относительно узкой кольцевой прорези от пластины, как показано на фиг.38, где это средство точной настройки азимутально симметрично для обеспечения симметрии в сигналах, которые проходят в радиальном направлении наружу от центра конструкции.

На фиг. 39 и фиг. 41 иллюстрируются средства увеличения полосы рабочих частот этой конструкции антенны. Поскольку сигналы распространяются в радиальном направлении наружу, полосу рабочих частот увеличивают посредством обеспечения различных дифференциальных резонансных контуров в различных радиальных направлениях. Изменение геометрии делают азимутально симметричным, чтобы минимизировать геометрическое нарушение азимутального магнитного поля. На фиг. 39 и фиг. 41 иллюстрируются конфигурации, которые были легко образованы из трубопроводной арматуры, выпускаемой на промышленной основе, тогда, как на фиг. 25 (или фиг. 24) иллюстрируется конфигурация с синусоидально изменяющимся радиусом, что уменьшит геометрические нарушения магнитного поля.

Спиральные антенны известного уровня техники нашли применение для дистанционного зондирования геотехнических элементов и для их навигации. Для этого случая применения используют относительные частоты, вызывающие необходимость создания больших конструкций для обеспечения хорошей производительности. На фиг. 43 иллюстрируется линейная спиральная антенна. На фиг. 44 иллюстрируется аппроксимированная линейная спираль, где истинная спираль разделена на серию одновитковых рамок, разделенных линейными межсоединениями. Если магнитное поле однородно или квазиоднородно по длине такой конструкции, то рамочные элементы могут быть отделены от сложного линейного элемента для образования конструкции, показанной на фиг. 45. Эта конструкция может быть дополнительно сжата по размеру путем последующей замены линейного элемента тороидальной спиральной или тороидальной полоидальной конструкций антенны, описанными выше, как иллюстрируется на фиг. 46. Главным преимуществом этой конфигурации является то, что ее общая конструкция более компактна, чем соответствующая линейная спираль, что является предпочтительным для портативных устройств, например, для воздушных, наземных или морских транспортных средств или для случаев применения, где требуется не привлекать к себе внимания. Дополнительное преимущество этой конфигурации и конфигурации, показанной на фиг. 45, заключается в том, что компоненты сигнала магнитного поля и электрического поля разъединены, обеспечивая возможность их последующей обработки и рекомбинации способом, который отличается от способа, характерного для линейной спирали, но который может обеспечить дополнительную информацию.

На фиг. 48 приведена схематическая иллюстрация электромагнитной антенны 48. Антенна 48 содержит многократно соединенную поверхность, например, тороид TF, показанный на фиг. 1, изолированный проводящий контур 50 и две сигнальные клеммы 52, 54.

Используемый в этой заявке термин "многократно соединенная поверхность" включает в себя (но без ограничения) (а) любую тороидальную поверхность, например, предпочтительный тороид TF, имеющий большой радиус, который больше или равен малому радиусу; (б) другие поверхности, образованные вращением плоской замкнутой кривой или многоугольника, имеющие множество различных радиусов вокруг оси, лежащей на плоскости, причем большой радиус таких других поверхностей больше или равен максимальному малому радиусу; и (в) иные поверхности, например, поверхности, аналогичные поверхностям шайбы или гайки, например, шестигранной гайки, полученной, как правило, из плоского материала, для ограничения (относительно плоскости) внутренней окружности, большей нуля, и наружной окружности, большей внутренней окружности, причем наружная и внутренняя окружности являются плоскими замкнутыми кривыми и/или многоугольниками.

Выбранный в качестве примера, изолированный проводящий контур 50 проходит в токопроводящей дорожке 56 вокруг и поверх тороида TF, показанного на фиг. 1, от узла 60 (+) до другого узла 62 (-). Изолированный проводящий контур 50 проходит также в другой токопроводящей дорожке 58 вокруг и поверх тороида TF от узла 62 (-) к узлу 60 (+), образуя в соответствии с этим одну непрерывную токопроводящую дорожку вокруг и поверх тороида TF.

Как описано выше в связи с фиг. 1, токопроводящие дорожки 56, 58 могут быть спиральными токопроводящими дорожками, имеющими встречное направление и одинаковое число витков, причем направление шага спирали токопроводящей дорожки 56, показанной сплошной линией, является правым, а направление шага спирали токопроводящей дорожки 58, показанной пунктирной линией, является левой, которое противоположно направлению шагу правой спирали.

Токопроводящие дорожки 56, 58 не обязательно должны быть спиральными, чтобы соответствовать сущности настоящего изобретения. Токопроводящие дорожки 56, 58 могут быть "полоидально-периферийными обмотками" со встречной намоткой, намотки которых имеют противоположное направление, как было описано выше в связи с фиг. 14, в соответствии с чем спираль, образуемая каждым из двух изолированных проводников W1, W2, разделена на серию межсоединенных полоидальных рамок 14.1.

Как следует из фиг. 48, токопроводящие дорожки 56, 58 изменяют свое направление на обратное в узлах 60, 62. Сигнальные клеммы 52, 54 соответственно электрически соединены с узлами 60, 62. Сигнальные клеммы 52, 54 подают или принимают от изолированного проводящего контура 50 выходной (передаваемый) или входной (принимаемый) радиочастотный электрический сигнал 64. Например, в случае передаваемого сигнала, одну бесконечную токопроводящую дорожку изолированного проводящего контура 50 питают последовательно от сигнальных клемм 52, 54.

Квалифицированному в этой области техники специалисту будет очевидно, что токопроводящие дорожки 56, 58 могут быть образованы одним изолированным проводником, например, проводом или проводником печатной платы, который образует одну бесконечную токопроводящую дорожку, включающую в себя токопроводящую дорожку 56 от узла 60 к узлу 62 и токопроводящую дорожку 58 от узла 62 к узлу 60. Квалифицированному в этой области техники специалисту также будет очевидно, что токопроводящие дорожки 56, 58 могут быть образованы множеством изолированных проводников, например, одним изолированным проводником, который образует токопроводящую дорожку от узла 60 к узлу 62, и другим изолированным проводником, который образует токопроводящую дорожку 58 от узла 62 обратно к узлу 60.

На фиг. 49-51 иллюстрируются диаграммы электрических и магнитных полей относительно узлов 60, 62 антенны 48. Аналогично описанному выше в связи с фиг. 7-12, токи в токопроводящих дорожках 56, 58, показанных на фиг. 48 смещены по фазе на 180 градусов. Распределение токов на этих диаграммах относится к узлам 60, 62, где приняты следующие обозначения J-электрический ток, М - магнитный поток, CW - по часовой стрелке, CCW - против часовой стрелки. При этом анализе было сделано допущение, что номинальная рабочая частота сигнала 64 настраивается в конструкции антенны 48 так, чтобы окружная электрическая длина (дорожки) была равна половине длины волны и чтобы распределение тока в конструкции было синусоидальным по величине, что является аппроксимацией. Токопроводящие дорожки 56, 58 со встречной намоткой, каждая из которых имеет длину, составляющую приблизительно половину ведомой волны номинальной рабочей частоты, могут быть представлены как элементы неравномерной линии передачи с симметричным питанием. Токопроводящие дорожки 56, 58 образуют замкнутый контур, который был скручен для образования "восьмерки" и затем сложен пополам для образования двух концентрических обмоток.

Для более хорошего понимания варианта осуществления, показанного на фиг. 48-51, ниже приведено описание соответствующего примера.

Пример
Например, при номинальной рабочей частоте 30,75 МГц, линейная полуволновая антенна (не показана) будет иметь длину, составляющую приблизительно 4,877 м (192,0 дюйма), принимая во внимание, что величина, обратная коэффициенту замедления, составляет 1,0. В противоположность этому, при выбранной в качестве примера номинальной рабочей частоте 30, 75 МГц, электромагнитная антенна 48, в которой использован тороид TF, иллюстрируемый на фиг. 1, будет иметь следующие характеристики
а = 28,50 см (11,22 дюйма) большой радиус,
b = 1,32 (0,52 дюйма) малый радиус,
N = 36 витков шестнадцати проволочного провода в каждой из токопроводящих дорожек 56, 58,
m = 2 токопроводящие дорожки 56, 58.

На диаграмме, приведенной на фиг. 49, показано распределение электрического тока с полярностью, отнесенной к направлению прохождения от узлов 60, 62, из которых исходят сигналы. На диаграмме, приведенной на фиг. 50, показано аналогичное распределение тока при общем направлении против часовой стрелки, принимая во внимание, что полярность тока изменяется относительно направления, к которому его относят. На фиг. 51 иллюстрируется распределение соответствующего магнитного потока, при использовании принципов, иллюстрируемых выше в связи с фиг. 1. На фиг. 50 показано, что результирующее распределение электрического тока на тороиде TF, показанном на фиг. 1, аннулируется, а на фиг. 51 - что результирующее распределение магнитного потока увеличивается.

Таким образом, токопроводящая дорожка 56 проводит электрические токи CCW1J, CW1J, а токопроводящая дорожка 58 проводит электрические токи CCW2J, CW2J. Эти токопроводящие дорожки 56, 58 и соответствующие электрические токи генерируют соответствующие магнитные потоки, направленные по часовой стрелке против часовой стрелки, например, магнитные потоки CCW1M, CCW2M, генерируемые соответствующими токопроводящими дорожками 56, 58 и соответствующими электрическими токами CCW1J, CCW2J. На фиг. 50 иллюстрируется ослабляющее воздействие на распределение потоков, проходящих в направлении CCW, токов CCW1J, CCW2J. Аналогичным образом, на фиг. 51 иллюстрируется усиливающее воздействие на распределение магнитных потоков, проходящих в направлении CCW, магнитных токов CCW1M, CCW2M.

Способ передачи радиочастотного сигнала, например, сигнала 64, с помощью антенны 48, образец которой иллюстрируется на фиг. 48, предусматривает приложение радиочастотного сигнала 64 к сигнальным клеммам 52, 54 для возбуждения между ними электрических токов CCW1J, CW1J, CCW2J, CW2J радиочастотного сигнала; проведение электрических токов CCW1J, CW1J по первой токопроводящей дорожке 56; проведение электрических токов CCW1J, CW2J по токопроводящей дорожке 58; и использование токопроводящих дорожек 56, 58 со встречным направлением относительно друг друга.

На фиг. 52 приведено схематическое изображение другой электромагнитной антенны 48'. Антенна 48' содержит многократно соединенную поверхность, например, тороид TF, показанный на фиг. 1, изолированный проводящий контур 50' и две сигнальные клеммы 52', 54'. Электромагнитная антенна 48', изолированный проводящий контур 50' и сигнальные клеммы 52', 54' в общем аналогичны электромагнитной антенне 48, изолированному проводящему контуру 50 и сигнальным клеммам 52, 54, показанным на фиг. 48.

Приводимый в качестве примера изолированный проводящий контур 50' проходит в токопроводящей дорожке 56' вокруг и поверх тороида TF, показанного на фиг. 1, от узла 60' (+) до промежуточного узла A и от промежуточного узла A до другого узла 62' (-). Изолированный проводящий контур 50' проходит также в другой токопроводящей дорожке 58' вокруг и поверх тороида TF от узла 62' (-) к другому промежуточному узлу B и от промежуточного узла B к узлу 60' (+), образуя в соответствии с этим одну бесконечную токопроводящую дорожку вокруг и поверх тороида TF.

Как описано выше в связи с фиг. 14 и фиг. 48, токопроводящие дорожки 56', 58' могут быть спиральными токопроводящими дорожками со встречным направлением, имеющими одинаковое число витков, или могут быть образованы иначе, например, в виде "полоидально-периферийных конфигураций обмотки" с противоположными направлениями намотки.

Сигнальные клеммы 52', 54' подают или принимают из изолированного проводящего контура 50', соответственно, выходной (передаваемый) или входной (принимаемый) радиочастотный электрический сигнал 64. Токопроводящие дорожки 56', 58', каждая из которых имеет длину, приблизительно равную половине длины ведомой волны номинальной рабочей частоты сигнала 64, меняют свое направление на обратное в промежуточных узлах A, B. Сигнальные клеммы 52', 54' соответственно электрически соединены с промежуточными узлами A, B. Предпочтительно, чтобы узлы 60', 62' были диаметрально противоположны промежуточным узлам A, B так, чтобы длина токопроводящих дорожек 56', 58' от соответствующих узлов 60', 62' до соответствующих промежуточных узлов A, B была такой же, как длина токопроводящих дорожек 56', 58' от соответствующих промежуточных узлов A, B до соответствующих узлов 62', 60'.

Квалифицированному в этой области техники специалисту будет очевидно, что токопроводящие дорожки 56', 58' могут быть образованы одним изолированным проводником, который образует одну бесконечную токопроводящую дорожку, включающую в себя токопроводящую дорожку 56' от узла 60' до промежуточного узла A, а затем к узлу 62', и токопроводящую дорожку 58' от узла 62' к промежуточному узлу B, а затем к узлу 60'. Квалифицированному в этой области техники специалисту будет также очевидно, что каждая из токопроводящих дорожек 56', 58' может быть образована одним или более изолированными проводниками, например, одним изолированным проводником от узла 60' до промежуточного узла A и от промежуточного узла A до узла 62'; или одним изолированным проводником от узла 60' до промежуточного узла A и другим изолированным проводником от промежуточного узла A к узлу 62'.

На фиг. 53-55 иллюстрируются диаграммы электрических и магнитных полей, аналогичных соответствующим диаграммам на фиг. 49-51, относительно узлов 60', A, B, 62' антенны 48', показанной на фиг. 52.

На фиг. 56 иллюстрируется схематическое изображение другой электромагнитной антенны 66. Антенна 66 содержит многократно соединенную поверхность, например, тороид TF, показанный на фиг. 1, первый изолированный проводящий контур 68, второй изолированный проводящий контур 70 и две сигнальные клеммы 72, 74.

Изолированный проводящий контур 68 включает в себя две, как правило, спиральные токопроводящие дорожки 76, 78, а изолированный проводящий контур 70 аналогичным образом включает в себя две, как правило, спиральные токопроводящие дорожки 80, 82. Изолированный проводящий контур 68 проходит в токопроводящей дорожке 76 вокруг и частично поверх тороида TF, показанного на фиг. 1, от узла 84 до узла 86 и также проходит в токопроводящей дорожке 78 вокруг и частично поверх тороида TF от узла 86 к узлу 84 так, чтобы токопроводящие дорожки 76, 78 образовывали бесконечную токопроводящую дорожку вокруг и по существу поверх тороида TF. Изолированный проводящий контур 70 проходит в токопроводящей дорожке 80 вокруг и частично поверх тороида TF от узла 88 до узла 90 и также проходит в токопроводящей дорожке 82 вокруг и частично поверх тороида TF от узла 90 к узлу 88 так, чтобы токопроводящие дорожки 80, 82 образовывали другую бесконечную токопроводящую дорожку вокруг и по существу поверх тороида TF.

Как описано выше в связи с фиг. 14 и фиг. 48, токопроводящие дорожки 76, 78 и 80, 82 могут быть спиральными токопроводящими дорожками, имеющими встречное направление и одинаковое число витков, или могут быть другими, например, "полоидально-периферийными конфигурациями обмоток" со встречной намоткой, намотки которых имеют противоположное направление. Например, направление шага токопроводящей дорожки 76 может быть правым, показанным сплошной линией, направление шага токопроводящей дорожки 76 - левым, имеющим противоположное направление, показанное пунктирной линией, а направление шага токопроводящих дорожек 80 и 82 является левым и правым, соответственно. Токопроводящие дорожки 76, 78 меняют свое направление на обратное в узлах 88 и 90.

Сигнальные клеммы 72, 74 подают или принимают от изолированных токопроводящих контуров 68, 70 выходной (передаваемый) или входной (принимаемый) радиочастотный электрический сигнал 92. Например, в случае передаваемого сигнала, две бесконечные токопроводящие дорожки изолированных проводящих контуров 68, 70 питаются параллельно от сигнальных клемм 72, 74. Каждая из токопроводящих дорожек 76, 78, 80, 82 имеет длину, равную одной четверти длины ведомой волны номинальной рабочей частоты сигнала 92. Как показано на фиг. 56, сигнальная клемма 72 электрически соединена с узлом 84, а сигнальная клемма 74 электрически соединена с узлом 88.

Квалифицированному в этой области техники специалисту будет очевидно, что каждый из изолированных проводящих контуров 68, 70 может быть образован посредством одного или более изолированных проводников. Например, изолированный проводящий контур 68 может иметь один проводник для обеих токопроводящих дорожек 76, 78; по одному проводнику для каждой из токопроводящих дорожек 76, 78; или многократно электрически соединенные проводники для каждой из токопроводящих дорожек 76, 78.

На фиг. 57-59 иллюстрируются диаграммы электрических и магнитных полей, аналогичных соответствующим диаграммам, показанным на фиг. 49-51, относительно узлов 84, 86, 88, 90 антенны 66, показанной на фиг. 56. На диаграмме фиг. 58 показано аналогичное распределение тока при ссылке на общее направление против часовой стрелки, а на диаграмме фиг. 59 иллюстрируется соответствующее распределение магнитного потока.

На фиг. 60 иллюстрируется схематическое изображение другой электромагнитной антенны 66'. Электромагнитная антенна 66', в общем, аналогична электромагнитной антенне 66, показанной на фиг. 56. Электромагнитная антенна 66' содержит сигнальные клеммы 94, 96, которые аналогичны соответствующим сигнальным клеммам 72, 74, показанным на фиг. 56, и сигнальным клеммам 98, 100. Сигнальная клемма 98 электрически соединена с узлом 90, а сигнальная клемма 100 электрически соединена с узлом 86.

Как показано на фиг. 60, пары 94, 96 и 98, 100 сигнальных клемм 94, 96, 98, 100 подают или принимают от изолированных проводящих контуров 68, 70 выходной (передаваемый) или входной (принимаемый) радиочастотный электрический сигнал 94 параллельно сигнальным клеммным парам 94, 96 и 98, 100.

В альтернативном варианте, как показано на фиг. 61, между сигналом 94 и одной или обеими парами 94, 96 и 98, 100, показанными на фиг. 60, может быть использована импедансная и фазовращающая цепь. Без отклонения от сущности настоящего изобретения могут быть использованы также другие средства согласования и симметрирования импеданса, фаз и амплитуды, знакомые квалифицированным специалистам в этой области техники.

На фиг. 62 иллюстрируется характерная угломестная диаграмма направленности излучения для электромагнитных антенн 48, 48', 66, показанных на фиг. 48, 52, 56, соответственно. Эти антенны являются линейными (например, вертикально) поляризованными и имеют физически низкий профиль, связанный с малым диаметром тороида TF, показанного на фиг. 1, вдоль направления поляризации. Кроме того, такие антенны являются, как правило, всенаправленными в направлениях, которые нормальны к направлению поляризации, с максимальным коэффициентом направленного действия излучения в направлениях нормальных к направлению поляризации и минимальным коэффициентом направленного действия излучения в направлении поляризации.

Электромагнитные антенны 48, 48', 66, показанные на фиг. 48, 52, 56, соответственно, по сравнению с антеннами известного уровня техники уменьшают большой диаметр тороидальной поверхности при резонансе. Длина электрической окружности малой тороидальной оси составляет 1/2 λ, которая в два раза меньше, чем у антенн известного уровня техники, имеющих минимальную электрическую окружную длину λ. Скорость распространения волны вдоль проводящих контуров 50, 50', 68, 70 примерно в два-три раза меньше, чем в соответствии с расчетными формулами Кандоиана и Сихака. В соответствии с этим, большой диаметр тороидальной поверхности приблизительно в четыре-шесть раз меньше. Кроме того, с соответствующими электромагнитными антеннами 48; 48'; 66 используют только один питаемый вход сигнальных клемм 52, 54; 52', 54'; 72, 74 и по этой причине упрощается задача согласования входного сопротивления таких антенн с сопротивлением линии передачи соответствующих сигналов 64; 92. Кроме того, резонанс на основной частоте каждой из электромагнитных антенн 48, 48' обеспечивает относительно широкую полосу рабочих частот (например, приблизительно 10-20 процентов резонанса на основной частоте) по сравнению с соответствующим резонансом на частоте первой гармоники для обеспечения самой широкой полосы частот при предполагаемой номинальной рабочей частоте. Эффективность электромагнитной антенны 48, взятой в качестве примера, сравнима с эффективностью вертикального полуволнового симметричного вибратора и обеспечивает более широкий диапазон связи (например, более 38 статутных миль) над морем, чем диапазон (например, приблизительно 12 статутных миль) сравнимого с четвертьволнового несимметричного вибратора или штыревой антенной.

Помимо модификаций и вариантов осуществления, описанных и предложенных выше, квалифицированный в этой области техники специалист может оказаться способным разработать другие модификации и варианты без отклонения от истинного объема и сущности настоящего изобретения.

Похожие патенты RU2170996C2

название год авторы номер документа
ЭЛЕКТРОМАГНИТНАЯ АНТЕННА (ВАРИАНТЫ) 1996
  • Крейвен Роберт П.М.
  • Принки Майкл Т.
  • Смит Джеймс
RU2159486C2
ЭЛЕКТРОМАГНИТНАЯ АНТЕННА (ВАРИАНТЫ) И СПОСОБ ПЕРЕДАЧИ ЭЛЕКТРОМАГНИТНОГО СИГНАЛА 1999
  • Ван Ворхис Курт Л.
RU2218637C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ СО СПИРАЛЬНЫМ ПОПЕРЕЧНЫМ СЕЧЕНИЕМ И УСТРОЙСТВО НА ЕГО ОСНОВЕ 2020
  • Комнатнов Максим Евгеньевич
  • Газизов Тальгат Рашитович
  • Николаев Илья Игоревич
  • Демаков Александр Витальевич
  • Дроздова Анастасия Александровна
RU2749558C1
Способ удержания и нагрева плазмы и устройство для его реализации 1979
  • Тахиро Окава
SU1217269A3
БЕСКОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА 2013
  • Меньших Олег Фёдорович
RU2533886C1
ОБЪЕДИНЕННЫЙ СКВАЖИННЫЙ ИНСТРУМЕНТ ДЛЯ ИЗМЕРЕНИЯ БОКОВОГО УДЕЛЬНОГО СОПРОТИВЛЕНИЯ И УДЕЛЬНОГО СОПРОТИВЛЕНИЯ РАСПРОСТРАНЕНИЯ 2005
  • Фредетт Марк А.
  • Холл Джеймс Стефен
  • Фрей Марк Т.
  • Дион Доминик
RU2398112C2
СПОСОБ ВЗРЫВНОЙ КУМУЛЯЦИИ МАГНИТНОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Борискин А.С.
  • Димант Е.М.
RU2156026C2
ТЕРМОЯДЕРНЫЙ РЕАКТОР И СПОСОБ ПРОВЕДЕНИЯ РЕАКЦИИ В НЕМ 1996
  • Ростокер Норман
  • Монкхорст Хендрик Дж.
RU2174717C2
ЗАЩИТА ОТ НАРУШЕНИЯ СВЕРХПРОВОДИМОСТИ В СВЕРХПРОВОДЯЩИХ МАГНИТАХ 2017
  • Нунан, Пол
  • Слэйд, Роберт
RU2754574C2
УСТРОЙСТВО И СИСТЕМА РАДИОСВЯЗИ, АНТЕННАЯ СИСТЕМА, ДИПЛЕКСЕР ДЛЯ ПРИСОЕДИНЕНИЯ К АНТЕННЕ И СПОСОБ РАБОТЫ АНТЕННЫ 1997
  • Лейстен Оливер Пол
RU2210146C2

Иллюстрации к изобретению RU 2 170 996 C2

Реферат патента 2001 года ТОРОИДАЛЬНАЯ АНТЕННА (ВАРИАНТЫ)

Изобретение относится к передающим и приемным антеннам, в частности к спиральным антеннам. Техническим результатом является создание компактной антенны с вертикальной поляризацией. Заявляемая антенна имеет один или более изолированных проводящих контуров с обмотками, которые являются обмотками со встречной намоткой вокруг и поверх многократно соединенной поверхности, например тороидальной поверхности. Многократно соединенная поверхность имеет большой радиус и малый радиус, причем большой радиус по крайней мере равен малому радиусу. Изолированные проводящие контуры проходят в первой, как правило, спиральной токопроводящей дорожке вокруг и поверх многократно соединенной поверхности с первым направлением шага спирали от первого узла к второму узлу и также проходят во второй, как правило, спиральной токопроводящей дорожке вокруг и поверх многократно соединенной поверхности с вторым направлением шага спирали, которое противоположно первому направлению шага спирали, от второго узла к первому узлу, так, чтобы первая и вторая, как правило, спиральные токопроводящие дорожки проходили во втором направлении относительно друг друга и образовывали одну бесконечную токопроводящую дорожку вокруг и поверх многократно соединенной поверхности. Первая сигнальная клемма электрически соединена с первым узлом, а вторая сигнальная клемма электрически соединена с вторым узлом. Изолированные проводящие контуры могут образовывать одну или более бесконечных токопроводящих дорожек вокруг и поверх многократно соединенной поверхности. Обмотки могут иметь спиральную конфигурацию, полоидально-периферийную конфигурацию или могут быть изготовлены из проводника с прорезями на тороиде. Описан также способ, связанный с применением указанной антенны. 5 с. и 29 з.п.ф-лы, 62 ил.

Формула изобретения RU 2 170 996 C2

1. Электромагнитная антенна (48), содержащая многосвязную поверхность (TF) с большим радиусом и меньшим радиусом, причем больший радиус, по меньшей мере, равен меньшему радиусу, изолированное проводящее средство (50), вытянутое в первую спиральную проводящую дорожку вокруг упомянутой многосвязной поверхности (TF) и над ней, с первым значением шага спирали от первого узла (60) до второго узла (62), указанное изолированное проводящее средство (50) вытянуто также во вторую спиральную проводящую дорожку вокруг указанной многосвязной поверхности (TF) и над ней со вторым значением шага спирали, противоположно направленным первому значению шага спирали, от второго узла (62) до первого узла (60), чтобы первая и вторая спиральные проводящие дорожки были намотаны навстречу друг другу и образовывали единую бесконечную проводящую дорожку вокруг указанной многосвязной поверхности (TF) и над ней, а также первый и второй сигнальные выводы (52, 54) соответственно электрически соединенные с первым и вторым узлами (60, 62). 2. Электромагнитная антенна (48) по п.1, отличающаяся тем, что указанная многосвязная поверхность (TF) представляет собой тороидальную поверхность (TF). 3. Электромагнитная антенна (48) по п.1, отличающаяся тем, что указанное изолированное проводящее средство (50) содержит один изолированный проводник, образующий единую бесконечную проводящую дорожку. 4. Электромагнитная антенна (48) по п.1, отличающаяся тем, что указанное изолированное проводящее средство (50) включает в себя первый изолированный проводник (56), проходящий от первого узла (60) ко второму узлу (62), и второй изолированный проводник (58), проходящий от второго узла (62) к первому узлу (60). 5. Электромагнитная антенна (48) по п.1, отличающаяся тем, что указанное изолированное проводящее средство (50) включает в себя первое проводящее средство (56) для пропускания первого электрического тока (CCW1J, CW1J) в первую спиральную проводящую дорожку; для получения первого магнитного потока (CCW1M) от первого электрического тока (CCW1J, CW1J) в первой спиральной дорожке, и второе проводящее средство (58) для пропускания второго электрического тока (CCW2J, CW2J) во вторую спиральную дорожку для получения второго магнитного потока (CCW2M) от второго электрического тока (CCW2J, CW2J) во второй спиральной проводящей дорожке. 6. Электромагнитная антенна (48) по п.5, отличающаяся тем, что первое и второе проводящие средства (56, 58) обеспечивают интерференцию с усилением первого и второго магнитных потоков (CCW1M, CCW2M), чтобы вырабатывать передаваемый сигнал из упомянутой электромагнитной антенны (48). 7. Электромагнитная антенна (48) по п.6, отличающаяся тем, что первое и второе проводящие средства (56, 58) обеспечивают деструктивную интерференцию первого и второго электрических токов (CCW1J, CW1J, CCW2J, CW2J). 8. Электромагнитная антенна (48) по п.1, отличающаяся тем, что указанные сигнальные выводы (52, 54) проводят сигнал (64) антенны, имеющий номинальную рабочую частоту, в которой длина упомянутого изолированного проводящего средства (50) в каждой из спиральных проводящих дорожек составляет около половины канализуемой длины волны указанной номинальной рабочей частоты. 9. Электромагнитная антенна (48) по п.1, отличающаяся тем, что первая спиральная проводящая дорожка использует первый полоидально-периферический узор (W1) намотки и вторая спиральная проводящая дорожка использует второй полоидально-периферический узор (W2) намотки. 10. Электромагнитная антенна (48) по п.9, отличающаяся тем, что указанная многосвязаная поверхность представляет собой тороидальную поверхность (TF). 11. Электромагнитная антенна (48) по п.9, отличающаяся тем, что указанное изолированное проводящее средство (50) содержит единый изолированный проводник, образующий единую бесконечную проводящую дорожку. 12. Электромагнитная антенна (48) по п.9, отличающаяся тем, что указанное изолированное проводящее средство (50) содержит первый изолированный проводник (56), проходящий от первого узла (60) ко второму узлу (62), и второй изолированный проводник (58), проходящий от второго узла (62) к первому узлу (60). 13. Электромагнитная антенна (48) по п.9, отличающаяся тем, что указанные сигнальные выводы (52, 54) установлены с обеспечением проведения сигнала (64) антенны, имеющего номинальную рабочую частоту; а длина указанного изолированного проводящего средства (50) в каждом из полоидально-периферических узоров (W1, W2) обмотки приблизительно равна половине канализируемой длины волны указанной номинальной рабочей частоты. 14. Электромагнитная антенна (48'), содержащая многосвязную поверхность (TF) с большим радиусом и меньшим радиусом, причем больший радиус, по меньшей мере, равен меньшему радиусу, изолированное проводящее средство (50') вытянутое в первую в общем спиральную проводящую дорожку вокруг упомянутой многосвязной поверхности (TF) и над ней с первым значением шага спирали от первого узла (60') до второго узла (А) и от второго узла (А) до третьего узла (62'), указанное изолированное проводящее средство (50) вытянуто также во вторую в общем спиральную проводящую дорожку вокруг указанной многосвязной поверхности (TF) и над ней, со вторым значением шага спирали, противоположно направленным первому значению шага спирали, от третьего узла (62') до четвертого узла (В) и от четвертого узла (В) до первого узла (60'), чтобы первая и вторая в общем спиральные проводящие дорожки были намотаны навстречу друг другу и образовывали единую бесконечную проводящую дорожку вокруг указанной многосвязной поверхности (TF) и над ней, а также первый и второй сигнальные выводы (52', 54'), соответственно электрически соединенные со вторым и четвертым узлами (А, В). 15. Электромагнитная антенна (48') по п.14, отличающаяся тем, что указанная многосвязная поверхность (TF) представляет собой тороидальную поверхность (TF). 16. Электромагнитная антенна (48') по п.14, отличающаяся тем, что указанное изолированное проводящее средство (50') содержит единый изолированный проводник, образующий единую бесконечную проводящую дорожку. 17. Электромагнитная антенна (48') по п.14, отличающаяся тем, что указанное изолированное проводящее средство (50') включает в себя первый изолированный проводник (56'), проходящий от первого узла (60') ко второму узлу (А) и от второго узла (А) к третьему узлу (62'), и второй изолированный проводник (58'), проходящий от третьего узла (62') к четвертому узлу (В) и от четвертого узла (В) к первому узлу (60'). 18. Электромагнитная антенна (48') по п.14, отличающаяся тем, что первый и третий узлы (60', 62') в общем диаметрально противоположны второму и четвертому узлам (А, В), соответственно. 19. Электромагнитная антенна (48') по п.14, отличающаяся тем, что указанные сигнальные выводы (52', 54') проводят сигнал (64) антенны, имеющий номинальную рабочую частоту, и в ней длина указанного изолированного проводящего средства (50') в каждой из в общем спиральных проводящих дорожек составляет около половины канализируемой длины волны указанной номинальной рабочей частоты. 20. Электромагнитная антенна (66, 66'), имеющая сигнал антенны (92) и содержащая многосвязную поверхность (TF) с большим радиусом и меньшим радиусом, причем больший радиус, по меньшей мере, равен меньшему радиусу, первое изолированное проводящее средство (68), вытянутое в первую в общем спиральную проводящую дорожку вокруг многосвязной поверхности (TF) и частично над ней с первым значением шага спирали, от первого узла (84) до второго узла (86), а также вытянутое во вторую в общем спиральную проводящую дорожку вокруг указанной многосвязной поверхности (TF) и частично над ней со вторым значением шага спирали, противоположно направленным первому значению шага спирали, от второго узла (86) до первого узла (84), чтобы первая и вторая в общем спиральные проводящие дорожки образовывали первую бесконечную проводящую дорожку вокруг указанной многосвязной поверхности (TF) и в принципе над ней, а также второе изолированное проводящее средство (70), вытянутое в третью в общем спиральную проводящую дорожку вокруг указанной многосвязной поверхности (TF) и частично над ней со вторым значением шага спирали, от третьего узла (88) к четвертому узлу (90), а также вытянутое в четвертую в общем спиральную проводящую дорожку вокруг указанной многосвязной поверхности (TF) и частично над ней, с первым значением шага спирали, от четвертого узла (90) до третьего узла (88), чтобы третья и четвертая в общем спиральные проводящие дорожки образовывали вторую бесконечную проводящую дорожку вокруг многосвязной поверхности (TF) и в принципе над ней, причем первая и третья в общем спиральные проводящие дорожки намотаны навстречу относительно второй и четвертой в общем спиральных проводящих дорожек, соответственно, первый сигнальный вывод (72, 94), электрически соединенный с, как минимум, одним из первого и четвертого узлов (84, 90) и второй сигнальный вывод (74, 96), электрически соединенный с, как минимум, одним из второго и третьего узлов (86, 88), причем указанные первый и второй сигнальные выводы предназначены для пропускания сигнала (92) антенны. 21. Электромагнитная антенна (66, 66') по п.20, отличающаяся тем, что указанная многосвязная поверхность (TF) является тороидальной поверхностью (TF). 22. Электромагнитная антенна (66, 66') по п.20, отличающаяся тем, что указанные первое и второе изолированные проводящие средства (68, 70) включают в себя первый и второй изолированные проводники (76, 78), образующие, соответственно, первую и вторую бесконечные проводящие дорожки. 23. Электромагнитная антенна (66, 66') по п.20, отличающаяся тем, что указанное первое изолированное проводящее средство (68) включает в себя первый изолированный проводник (76), проходящий от первого узла (84) ко второму узлу (86), и второй изолированный проводник (78), проходящий от второго узла (86) к первому узлу (84), и в ней указанное второе изолированное проводящее средство (70) включает в себя третий изолированный проводник (80), проходящий от третьего узла (88) к четвертому узлу (90), и четвертый изолированный проводник (82), проходящий от четвертого узла (90) к третьему узлу (88). 24. Электромагнитная антенна (66, 66') по п.20, отличающаяся тем, что указанный сигнал (92) антенны имеет номинальную рабочую частоту, и в ней длина каждого из первого и второго изолированных проводящих средство (68, 70) в каждой из в общем спиральных проводящих дорожек составляет около четверти канализируемой длины волны указанной номинальной рабочей частоты. 25. Электромагнитная антенна по п.20, отличающаяся тем, что указанное первое сигнальное средство (72) включает в себя первый сигнальный вывод, электрически соединенный только с одним (84) из первого и четвертого узлов, и в ней указанное второе сигнальное выводное средство (74) включает в себя второй сигнальный вывод, электрически соединенный только с одним (88) из второго и третьего узлов. 26. Электромагнитная антенна (66') по п.20, отличающаяся тем, что указанное первое сигнальное выводное средство (94) включает в себя первый сигнальный вывод, электрически соединенный с первым узлом (84), и второй сигнальный вывод, электрически соединенный с четвертым узлом (90), и в ней указанное второе сигнальное выводное средство (96) включает в себя третий сигнальный вывод, электрически соединенный со вторым узлом (86), и четвертый сигнальный вывод, электрически соединенный с третьим узлом (88). 27. Способ передачи радиочастотного сигнала посредством тороидальной антенны (48, 10), включающий в себя подачу радиочастотного сигнала к первому и второму сигнальным выводам (52, 54) для возбуждения между ними электрических токов радиочастотного сигнала, проведение первого электрического тока (CCW1J, CW1J) в первом проводнике (56) вокруг многосвязной поверхности (TF) и над ней, имеющий большой радиус и меньший радиус, причем большой радиус, по меньшей мере, равен меньшему радиусу, а первый проводник (56) имеет первое значение шага спирали от первого сигнального вывода (52) ко второму сигнальному выводу (54), отличающийся тем, что он включает в себя также проведение второго электрического тока (CCW2J, CW2J), во втором проводнике (58) вокруг многосвязной поверхности (TF) и над ней, причем второй проводник (58) имеет второе значение шага спирали, которое противоположно направлено первому значению шага спирали, от второго сигнального вывода (54) к первому сигнальному выводу (52), при этом первый и второй проводники (56, 58) располагают с обеспечением их прохождения во встречном направлении относительно друг друга. 28. Способ по п.27, отличающийся тем, что он включает в себя образование единой бесконечной проводящей дорожки первым и вторым проводниками (56, 58) вокруг многосвязной поверхности (TF) и над ней. 29. Способ по п.28, отличающийся тем, что указанный радиочастотный сигнал имеет номинальную рабочую частоту, длина каждого первого и второго проводника (56, 58), приблизительно равна половине канализируемой длины волны указанной номинальной рабочей частоты. 30. Способ по п.27, отличающийся тем, что он включает в себя выработку первого магнитного потока (CCW1M) от указанного первого электрического тока (CCW1J, CW1J) в первом проводнике (56), выработку второго магнитного потока (CCW2M) от указанного второго электрического тока (CCW2J, CW2J) во втором проводнике (58) и обеспечение усиливающей интерференции первого и второго магнитных потоков (CCW1M, CCW2M) для выработки передаваемого сигнала из указанной тороидальной антенны (48). 31. Способ по п.30, отличающийся тем, что он включает в себя обеспечение деструктивной интерференции первого и второго электрических токов (CCW1J, CW1J, CCW2J, CW2J). 32. Способ по п.27, отличающийся тем, что подают другой сигнал к первому и второму сигнальным выводам (52, 54) посредством генератора (26.1) и обеспечивают обратную связь с тороидальной антенной (10) для настройки генератора и усиления. 33. Электромагнитная антенна, содержащая тороид (TF) и несущие сигнал выводы (S1, S2), отличающаяся тем, что она включает в себя множество проводящих рамок (27.1), охватывающих тороид (TF) так, что плоскость каждой из указанных рамок (27.1) пересекает тороид (TF), при этом каждая указанная рамка электрически соединена параллельно по отношению к каждой из других указанных рамок (27.1) и указанным несущим сигнал выводам (S1, S2). 34. Электромагнитная антенна по п.33, отличающаяся тем, что проводящий материал покрывает тороид, а указанные рамки (27.1) содержат пространственно разнесенные относительно друг друга прорези в проводящем материале.

Документы, цитированные в отчете о поиске Патент 2001 года RU2170996C2

US 4622558 A, 11.11.1986
Рамочная антенна 1982
  • Иванов Александр Борисович
SU1083264A1
US 4751515 A, 14.06.1988
Приспособление для улавливания и подачи колошниковой пыли в доменную печь 1933
  • Светловский И.Я.
SU43591A1
DE 3823972 А1, 18.01.1990
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1

RU 2 170 996 C2

Авторы

Вэн Вурис Курт Л.

Даты

2001-07-20Публикация

1996-06-06Подача