Предлагаемое изобретение относится к области теплофизических измерений.
Известен способ неразрушающего контроля ТФХ, заключающийся в импульсном тепловом воздействии по прямой линии на теплоизолированную поверхность исследуемого материала с последующей регистрацией момента наступления равенства избыточной температуры на заданном расстоянии от линии действия источника и разницы между избыточной температурой на линии действия источника и на заданном расстоянии от нее на поверхности исследуемого материала. (Авторское свидетельство 1728755 СССР, МКИ G O1 N 25/18, 1992).
Недостатком данного способа является относительно низкая избыточная температура в точках размещения термодатчиков, что приводит к снижению точности контроля ТФХ.
В известном техническом решении, наиболее близком к предлагаемому (авторское свидетельство 834480 СССР, МКИ G O1 N 25/18, 1979), осуществляют импульсное тепловое воздействие по прямой линии на теплоизолированную поверхность исследуемого материала (изделия) и фиксируют момент времени, когда отношение избыточных температур в двух разноотстоящих от источника точках поверхности исследуемого материала достигнет определенного наперед заданного значения.
Недостатком этого способа также является относительно низкая избыточная температура в точках размещения термодатчиков и, как следствие, низкая точность контроля ТФХ.
Техническим результатом предлагаемого изобретения является повышение точности контроля ТФХ за счет увеличения избыточной температуры в точках размещения термодатчиков при неизменной относительно способа-прототипа удельной мощности нагревателя.
Сущность предлагаемого способа заключается в определении ТФХ исследуемого материала путем импульсного теплового воздействия на его поверхность нагревателем в виде осесимметричной петли и последующей регистрации времени наступления равенства температур в двух контрольных точках. Для этого на теплоизолированной поверхности исследуемого материала размещают нагреватель, представляющий собой два параллельных луча, соединенных дугой полуокружности радиуса R, и два термодатчика (фиг.1), причем один термодатчик размещают в центре дуги, а другой - на дуге полуокружности на оси симметрии петли. В момент времени τ = 0 нагреватель импульсно выделяет количество тепла Q из расчета на единицу длины, после чего регистрируют время τ = τ0 наступления равенства избыточных температур T2(τ0) = T1(τ0) в точках размещения термодатчиков и температуру T1(τ0) в центре дуги. После регистрации времени и температуры коэффициенты тепло- и температуропроводности исследуемого материала рассчитывают соответственно по формулам:
где С1 и С2 - числовые коэффициенты C1=0,0142, C2=12,43.
При разработке предлагаемого способа предполагалось, что поверхность исследуемого материла идеально теплоизолирована. На практике в этих целях используют материал-подложку с высокими теплоизоляционными свойствами. Ввиду того, что коэффициенты тепло- и температуропроводности подложки все-таки отличны от нуля, возникают методические погрешности определения ТФХ исследуемого материала. Для оценки методической погрешности определения ТФХ предлагаемым способом проводилось машинное моделирование при Q=100 Дж/м и R=5•10-3 м, причем коэффициенты тепло- и температуропроводности исследуемого материала были соответственно приняты равными λ = 0.26 Вт/(м•К) и а=5•10-7 м2/с, а коэффициенты материала-подложки λп = 0.026 Вт/(м•К) и aп=3,13•10-7 м2/с (материал "рипор"). В ходе моделирования были получены следующие значения ТФХ исследуемого материала λ ==0.254 Вт/(м•К), а=5,22•10-7 м2/с. Таким образом, оценка методической погрешности в результате неидеальности теплоизоляции поверхности исследуемого материала по коэффициенту теплопроводности составила δλ = 2.3%, а по коэффициенту температуропроводности δa = 4.4%.к
Изобретение относится к области теплофизических измерений. На теплоизолированной поверхности исследуемого материала размещают нагреватель в виде петли и два термодатчика. В момент начала измерения нагреватель импульсно выделяет определенное количество тепла, после чего регистрируют время наступления равенства избыточных температур в точках размещения термодатчиков. Расчет теплофизических характеристик производится на основании полученных данных согласно формулам, приведенным в описании. Техническим результатом изобретения является повышение точности контроля. 1 ил.
Способ неразрушающего контроля теплофизических характеристик материалов, включающий в себя импульсное тепловое воздействие на теплоизолированную поверхность исследуемого материала и регистрацию времени наступления равенства избыточных температур в двух контрольных точках поверхности, отличающийся тем, что используют нагреватель в виде осесимметричной петли, представляющей собой два параллельных луча, соединенных дугой полуокружности радиуса R, и два термодатчика, один из которых располагают в центре дуги полуокружности нагревателя, а другой на дуге полуокружности на оси симметрии нагревателя, а теплофизические характеристики рассчитывают по формулам
где λ и а - соответственно коэффициенты тепло- и температуропроводности исследуемого материала;
Q - количество тепла, выделяемого нагревателем из расчета на единицу длины;
τ0 - время наступления заданного отношения температур в контрольных точках, отсчитанное от момента подачи теплового импульса;
R - радиус дуги полуокружности нагревателя;
T1(τ0) - избыточная температура в центре дуги полуокружности петли нагревателя;
С1 и С2 - числа, соответственно равные 0,0142 и 12,43.
Способ определения теплофизическихХАРАКТЕРиСТиК МАТЕРиАлОВ | 1979 |
|
SU834480A1 |
Способ определения теплофизических характеристик материалов | 1990 |
|
SU1728755A1 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ | 1993 |
|
RU2084879C1 |
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1991 |
|
RU2011977C1 |
Авторы
Даты
2002-02-20—Публикация
1999-11-22—Подача