РОТОР ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ ТУРБИНЫ Российский патент 2002 года по МПК F01D5/08 

Описание патента на изобретение RU2194864C2

Изобретение относится к роторам высокотемпературных газовых турбин и газотурбинных двигателей авиационного и наземного применения.

Известен ротор газовой турбины, диск первой ступени которого покрыт дефлектором, закрепленным на диске с помощью радиальных штифтов [1].

Недостатком известной конструкции является ее низкая надежность, так как из-за взаимных температурных деформаций диска и дефлектора радиальные штифты могут деформироваться, что приведет к поломке.

Наиболее близким к заявляемому является ротор двухступенчатой газовой турбины, основные диски первой и второй ступеней закрыты от контакта с горячими газами дефлекторами, которые закреплены по периферии дисков с помощью байонетных соединений, а по ступицам - болтами [2].

Недостатком известной конструкции, принятой за прототип, является ее низкая надежность из-за ненадежной работы байонетного соединения, так как для обеспечения взаимного перемещения из-за температурной деформации диска и дефлектора байонетное соединение выполнено с зазорами в осевом направлении, что приводит к наклепам и износу этого соединения, а также к увеличению паразитных утечек охлаждающего воздуха, идущего на охлаждение первой рабочей лопатки турбины, что приводит к ее перегреву и поломке.

Техническая задача, на решение которой направлено заявляемое изобретение, заключается в повышении надежности работы газовой турбины путем исключения появления вибраций полотна дефлектора и утечек охлаждающего воздуха.

Сущность технического решения заключается в том, что в роторе высокотемпературной газовой турбины, содержащем диски с установленными на них дефлекторами, зафиксированными относительно дисков по ступице болтами, а по периферии - байонетным соединением, согласно изобретению дефлектор установлен относительно диска с двойным осевым натягом: между внутренней опорной поверхностью на ступице и периферийным торцом дефлектора, и между контактными поверхностями байонетного соединения и периферийным торцом дефлектора, а также с двойной радиальной посадкой: по ступице - по внутреннему диаметру и по внутренним поверхностям радиальных выступов диска, в байонетном же соединении по наружному диаметру. Осевой натяг между внутренней опорной поверхностью на ступице и периферийным торцом дефлектора составляет 0,1....2 мм, осевой натяг между контактными поверхностями байонетного соединения и периферийным торцом дефлектора составляет 0....0,4 мм, а радиальный зазор по внутренним поверхностям байонетного соединения 0,01...1,0 мм.

Наличие осевого натяга между контактными поверхностями байонетного соединения и периферийным торцом дефлектора, равного 0...0,4 мм, обеспечивает постоянное прижатие этого торца к диску на всех режимах работы двигателя и минимизацию паразитных утечек. При осевом натяге <0 появится зазор для паразитных утечек охлаждающего воздуха, а при натяге >0,4 мм возможна поломка радиальных выступов этого соединения из-за больших напряжений в них.

Наличие осевого натяга между внутренней опорной поверхностью на ступице и периферийным торцом дефлектора, равного 0,1...2 мм, является страховочным, на случай износа контактных поверхностей в байонетном соединении, а также предотвращает вибрации тонкостенного полотна дефлектора. При осевом натяге <0,1 мм возможно появление вибраций полотна дефлектора и увеличение паразитных утечек охлаждающего воздуха в случае износа байонетного соединения. При осевом натяге >2 мм увеличиваются напряжения в полотне дефлектора, что может привести к его поломке.

Наличие двойной посадки по внутренним поверхностям байонетного соединения с радиальным зазором 0,01...1,0 мм уменьшает износ этих поверхностей, что повышает надежность байонетного соединения. При радиальном зазоре <0,01 мм затруднена постановка дефлектора при сборке с диском, что может вызвать его поломку. При радиальном зазоре >1,0 мм возможно появление вибрации полотна дефлектора и износ байонетного соединения.

На фиг.1 изображен продольный разрез ротора высокотемпературной газовой турбины.

На фиг.2 - элемент I на фиг.1 в увеличенном виде.

На фиг.3 - элемент II на фиг.2 в увеличенном виде.

Ротор высокотемпературной газовой турбины 1 состоит из вала 2, на котором установлены диски первой и второй ступеней 3 и 4 с рабочими лопатками первой и второй ступеней 5 и 6. Для изоляции дисков 3 и 4 от горячих газов в междисковой полости 7 установлены промежуточные диски 8 и 9. С другой стороны дисков 3 и 4, также для защиты от воздействия горячих газов, установлены дефлекторы дисков первой и второй ступеней 10 и 11. Полость 12 между дефлектором 10 и диском 3 служит для подвода охлаждающего воздуха на охлаждение рабочей лопатки первой ступени 5. Дефлектор 10 своей ступицей 13 установлен в радиальном направлении на внутренних радиальных выступах 14 диска 3 по внутреннему диаметру с переходной посадкой от натяга до зазора и фиксируется в осевом направлении относительно выступов 14 болтами 15 до упора в торцевую поверхность 16 выступов 14. При этом за счет упругой деформации гибкого полотна 17 дефлектора 10 между внутренней опорной поверхностью 18 на ступице 13 и периферийным торцом 19 дефлектора образуется осевой натяг величиной 0,1...2 мм. Байонетное соединение 20 на периферии диска 3 и дефлектора 10 состоит из радиальных выступов 21 диска 3 и выступов 22 дефлектора 10, контактирующих между собой в осевом направлении по радиальной поверхности 23. При этом между контактной радиальной поверхностью 23 байонетного соединения 20 и периферийным торцом 19 дефлектора 10 образуется осевой натяг величиной 0...0,4 мм. В байонетном соединении 20 выполнена периферийная посадка дефлектора 10 относительно диска 3 по наружному диаметру D относительно радиальных выступов 21 диска 3 с радиальным зазором δ = 0,01...1,0 мм.

Работает устройство следующим образом. При работе двигателя в полость 12 между диском 3 и дефлектором 10 поступает охлаждающий воздух для охлаждения рабочей лопатки первой ступени 5. При этом должны быть исключены или уменьшены до минимума паразитные утечки охлаждающего воздуха в месте контакта периферийного торца 19 дефлектора 10 с диском 3. Осевой натяг между контактными радиальными поверхностями 23 байонетного соединения 20 и периферийным торцом 19, равный 0. ..0,4 мм обеспечивает постоянное прижатие торца 19 к диску 3 на всех режимах работы двигателя и минимизацию паразитных утечек, а осевой натяг между ступицей 13 и периферией дефлектора, т.е. между торцами 18 и 19 дефлектора 10, равный 0,1....2 мм, является страховочным, на случай износа контактных поверхностей 23 в байонетном соединении 20, а также для предотвращения вибраций тонкостенного полотна 17 дефлектора 10. Уменьшению износа поверхностей 23 байонетного соединения 20 также способствует наличие посадки дефлектора 10 по поверхности D относительно внутренней поверхности радиальных выступов 21 диска 3 с радиальным зазором δ = 0,01...1,0 мм. При сборке дефлектор 10 устанавливается в радиальном направлении относительно диска 3 по поверхности d с переходной посадкой от натяга до зазора. Однако при работе двигателя из-за большей, чем у диска 3, температуры дефлектора 10, из-за температурной деформации у дефлектора 10 исчезает посадка по поверхности d и он центрируется по поверхности D относительно выступов 21 диска 3, выбирая зазор δ. При этом из-за трения по поверхности D исключается появление вибраций и износ байонетного соединения по поверхности 23, что также способствует повышению надежности соединения 20. При сбросе газа на переходном режиме тонкостенный дефлектор 10 остывает значительно быстрее массивного диска 3 и дефлектор 10 вновь центрируется по поверхности d. Такая двойная центровка дефлектора относительно диска по внутреннему d и периферийному D диаметрам не только повышает надежность работы байонетного соединения 20, но также исключает радиальное смещение дефлектора 10 относительно диска 3, особенно на переходных режимах, предотвращая повышенные вибраций ротора 1.

Источники информации
1. С. А. Вьюнов. Конструкция и проектирование авиационных ГТД. М.: Машиностроение, стр. 222, рис.4.63, 1989 г.

2. Авиационный двухконтурный турбореактивный двигатель Д-30КУ, М.: Машиностроение, 1975 г., стр. 165 - прототип.

Похожие патенты RU2194864C2

название год авторы номер документа
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2002
  • Иванов В.В.
  • Кузнецов В.А.
  • Трубников В.А.
RU2224893C2
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2001
  • Иванов В.В.
  • Кузнецов В.А.
  • Толмачев В.А.
  • Трубников В.А.
RU2207438C2
РОТОР ГАЗОВОЙ ТУРБИНЫ 2008
  • Кузнецов Валерий Алексеевич
RU2378517C1
РОТОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1998
  • Кузнецов В.А.
  • Иванов В.В.
RU2146765C1
РОТОР ТУРБИНЫ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ 2012
  • Кузнецов Валерий Алексеевич
RU2493371C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2002
  • Иванов В.В.
  • Кузнецов В.А.
  • Трубников В.А.
RU2237179C2
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2000
  • Кузнецов В.А.
  • Тункин А.И.
RU2180045C2
РОТОР ДВУХСТУПЕНЧАТОЙ ТУРБИНЫ 1998
  • Кузнецов В.А.
  • Иванов В.В.
RU2151883C1
ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1998
  • Иванов В.В.
  • Кузнецов В.А.
  • Толмачев В.А.
RU2151884C1
РОТОР ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ ТУРБИНЫ 2001
  • Иванов В.В.
  • Толмачев В.А.
  • Кузнецов В.А.
RU2200235C2

Иллюстрации к изобретению RU 2 194 864 C2

Реферат патента 2002 года РОТОР ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ ТУРБИНЫ

Ротор высокотемпературной газовой турбины содержит диски с установленными на них дефлекторами, зафиксированными относительно дисков по ступице болтами, а по периферии - байонетным соединением. Дефлектор установлен относительно диска с двойным осевым натягом: между внутренней опорной поверхностью на ступице и периферийным торцом дефлектора, и между контактными поверхностями байонетного соединения и периферийным торцом дефлектора. Диск установлен также с двойной радиальной посадкой: по ступице - по внутреннему диаметру и по внутренним поверхностям радиальных выступов диска, в байонетном же соединении по наружному диаметру. Осевой натяг между внутренней опорной поверхностью на ступице и периферийным торцом дефлектора составляет 0,1. . . 2 мм, осевой натяг между контактными поверхностями байонетного соединения и периферийным торцом дефлектора составляет 0...0,4 мм, а радиальный зазор по внутренним поверхностям байонетного соединения 0,01...1,0 мм. Изобретение позволяет повысить надежность работы газовой турбины. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 194 864 C2

1. Ротор высокотемпературной газовой турбины, содержащий диски с установленными на них дефлекторами, зафиксированными относительно дисков по ступице болтами, а по периферии байонетным соединением, отличающийся тем, что дефлектор установлен относительно диска с двойным осевым натягом: между внутренней опорной поверхностью на ступице и периферийным торцом дефлектора и между контактными поверхностями байонетного соединения и периферийным торцом дефлектора, а также с двойной радиальной посадкой: по ступице - по внутреннему диаметру и по внутренним поверхностям радиальных выступов диска, в байонетном же соединении по наружному диаметру. 2. Ротор по п. 1, отличающийся тем, что осевой натяг между внутренней опорной поверхностью на ступице и периферийным торцом дефлектора составляет 0,1. . . 2 мм, осевой натяг между контактными поверхностями байонетного соединения и периферийным торцом дефлектора составляет 0. . . 0,4 мм, а радиальный зазор по внутренним поверхностям байонетного соединения 0,01. . . 1,0 мм.

Документы, цитированные в отчете о поиске Патент 2002 года RU2194864C2

Способ обработки медных солей нафтеновых кислот 1923
  • Потоловский М.С.
SU30A1
- М.: Машиностроение, 1975, с.165
Устройство для охлаждения диска турбомашины 1975
  • Капустин Николай Константинович
  • Трушин Владимир Алексеевич
SU556221A1
Устройство для охлаждения диска турбомашины 1979
  • Капустин Николай Константинович
  • Середа Анатолий Васильевич
SU861660A2
СПОСОБ ПОЛУЧЕНИЯ ЦВЕТОВЫХ ЭФФЕКТОВ 2001
  • Бокша К.А.
  • Семенов В.М.
RU2189845C1
УСТРОЙСТВО ДЛЯ ИОННО-ПЛАЗМЕННОГО РАСПЫЛЕНИЯ МАТЕРИАЛОВ В ВАКУУМЕ 1984
  • Свиридов Е.В.
  • Мухортов В.М.
  • Клевцов А.Н.
  • Дудкевич В.П.
SU1240076A1
ЗАЩЕЧНАЯ (ТРАНСБУККАЛЬНАЯ) ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, ВКЛЮЧАЮЩАЯ АМИНОУКСУСНУЮ КИСЛОТУ 2003
RU2253442C1
US 3989410 А, 02.11.1976.

RU 2 194 864 C2

Авторы

Иванов В.В.

Кузнецов В.А.

Даты

2002-12-20Публикация

2001-01-22Подача