Изобретение относится к автомобильной промышленности и предназначено для использования при измерении ускорения автомобиля в системе электронного управления двигателем.
Известен автомобильный пьезоэлектрический измеритель ускорения, содержащий включенные последовательно чувствительный пьезоэлемент и усилитель заряда, входная цепь которого состоит из соединенных параллельно пьезоэлементу потенциалозадающего резистора и термокомпенсирующего конденсатора, имеющего положительный температурный коэффициент емкости (US 5095751, G 01 Р 15/09, 17.03.1992).
Недостаток данного устройства заключается в неудовлетворительной точности измерения, обусловленной низкой температурной стабильностью и слабым подавлением высоких частот, близких к частоте резонанса пьезоэлемента.
Низкая температурная стабильность объясняется тем, что использование конденсатора, имеющего положительный температурный коэффициент емкости, не позволяет в полной мере скомпенсировать изменение параметров пьезоэлемента, т. к. в широком диапазоне температур значения коэффициента преобразования и собственной емкости пьезоэлемента изменяются в широких пределах по разным и достаточно сложным законам.
Слабое подавление паразитного сигнала на частоте собственного резонанса пьезоэлемента может привести к перегрузке входного каскада усилителя заряда и, как следствие, к снижению точности измерений.
Наиболее близким к предложенному является пьезоэлектрический акселерометр, содержащий чувствительный пьезоэлемент, RC-фильтр низкой частоты, соединенный с выходом пьезоэлемента, потенциалозадающий резистор, включенный параллельно конденсатору RC-фильтра, усилитель, выполненный на базе операционного усилителя в неинвертирующем включении и подключенный входом к выходу RC-фильтра, и источник опорного напряжения, соответствующий полюс которого соединен с общим выводом чувствительного пьезоэлемента, конденсатора RC-фильтра и потенциалозадающего резистора (ЕР 1037053 A1, G 01 Р 15/09, 20.09.2000).
Недостаток указанного устройства также связан с существенными погрешностями измерения, обусловленными температурной нестабильностью.
Задачей изобретения является повышение температурной стабильности и точности измерения.
Поставленная задача решается тем, что в пьезоэлектрическом акселерометре, содержащем чувствительный пьезоэлемент, RC-фильтр низкой частоты, потенциалозадающий резистор, включенный параллельно конденсатору RC-фильтра, усилитель, выполненный на базе операционного усилителя в неинвертирующем включении и подключенный входом к выходу RC-фильтра, и источник опорного напряжения, соответствующий полюс которого соединен с общим выводом чувствительного пьезоэлемента, конденсатора RC-фильтра и потенциалозадающего резистора, между соответствующими выводами чувствительного пьезоэлемента и резистора RC-фильтра включен термостабильный компенсирующий конденсатор.
Решению поставленной задачи способствует также то, что величина емкости термостабильного компенсирующего конденсатора выбрана из выражения:
где С1мин - минимальное значение собственной емкости чувствительного пьезоэлемента в заданном диапазоне температур;
С2 - емкость компенсирующего конденсатора;
К - коэффициент, учитывающий минимум во сколько раз необходимо уменьшить относительную погрешность измерений, обусловленную изменением собственной емкости чувствительного пьезоэлемента в заданном диапазоне температур.
На чертеже представлена принципиальная электрическая схема предложенного пьезоэлектрического акселерометра.
Устройство содержит чувствительный пьезоэлемент 1, RC-фильтр низкой частоты с резистором 2 и конденсатором 3, потенциалозадающий резистор 4, включенный параллельно конденсатору 3 RC-фильтра, усилитель 5, выполненный на базе операционного усилителя в неинвертирующем включении и подключенный входом к выходу RC-фильтра 2-3, источник опорного напряжения 6, соответствующий полюс которого соединен с общим выводом чувствительного пьезоэлемента 1, конденсатора 3 RC-фильтра и потенциалозадающего резистора 4. Между соответствующими выводами чувствительного пьезоэлемента 1 и резистора 2 RC-фильтра включен термостабильный компенсирующий конденсатор 7.
В процессе работы устройства на чувствительный пьезоэлемент 1, закрепленный в выделенном месте системы электронного управления двигателем автомобиля, воздействуют виброускорения инерционных масс, что вызывает появление на электродах пьезоэлемента 1 электрического заряда, пропорционального величине ускорения. Полученные электрические сигналы фильтруются фильтром 2-3 низкой частоты, усиливаются усилителем 5 и поступают в блок регистрации (на схеме не показан).
Как известно, основной причиной низкой температурной стабильности при работе пьезоэлектрического акселерометра в широком диапазоне температур (от минус 40oС до плюс 125oС) является то, что коэффициент преобразования и собственная емкость чувствительного пьезоэлемента изменяются в больших пределах, по разным и достаточно сложным законам. Особенно это касается изменения собственной емкости чувствительного пьезоэлемента. Это приводит к изменению коэффициента преобразования и амплитудно-частотной характеристики пьезоэлектрического акселерометра и, как следствие, к снижению точности измерения.
В предложенном техническом решении последовательное включение с чувствительным пьезоэлементом 1 термостабильного компенсирующего конденсатора 7, т. е. конденсатора, имеющего практически нулевой температурный коэффициент емкости, позволяет уменьшить относительную погрешность измерения, обусловленную изменением собственной емкости чувствительного пьезоэлемента 1 в заданном диапазоне температур более чем в К раз, при этом
Это значительно облегчает задачу компенсации температурной зависимости коэффициента преобразования чувствительного пьезоэлемента 1 известными методами, в частности использованием, как в данном случае, конденсатора 3 фильтра низкой частоты с необходимым температурным коэффициентом емкости, и позволяет существенно повысить точность измерения ускорения пьезоэлектрическим акселерометром.
В реальных условиях величина емкости компенсирующего конденсатора 7 выбирается из соображений необходимости уменьшения относительной погрешности измерений, обусловленной изменением собственной емкости чувствительного пьезоэлемента 1 в заданном диапазоне температур, с учетом обеспечения нижней граничной частоты рабочего диапазона FН и необходимого коэффициента преобразования А пьезоэлектрического акселерометра:
где R2 - сопротивление потенциалозадающего резистора 4;
С1мин - минимальное значение собственной емкости чувствительного пьезоэлемента 1;
С2 - емкость компенсирующего конденсатора 7;
С3 - емкость конденсатора фильтра низкой частоты 4.
где помимо уже использовавшихся обозначений А0 - коэффициент преобразования чувствительного пьезоэлемента 1;
А1 - коэффициент усиления усилителя 5.
Последовательное включение с чувствительным пьезоэлементом 1 компенсирующего конденсатора 7 позволяет не только более чем в К раз уменьшить относительную погрешность измерений, связанную с изменением собственной емкости чувствительного элемента 1 в заданном диапазоне температур, но и упростить операцию настройки при изготовлении пьезоэлектрических акселерометров, так как дает возможность снизить чувствительность электрической схемы к разбросу собственных емкостей чувствительных пьезоэлементов, который может достигать ±20%, что особенно важно в условиях серийного и массового производства.
название | год | авторы | номер документа |
---|---|---|---|
Комплекс устройств для измерения параметров механических колебаний объектов с компенсацией температурной погрешности | 2023 |
|
RU2813636C1 |
ИЗМЕРИТЕЛЬ ВИБРАЦИЙ ДЛЯ ЭКСТРЕМАЛЬНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ | 2010 |
|
RU2456555C2 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ АКСЕЛЕРОМЕТР | 1995 |
|
RU2097772C1 |
Электрогидравлическая система | 1989 |
|
SU1779807A1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ | 2019 |
|
RU2715345C1 |
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 2007 |
|
RU2341805C1 |
ИЗМЕРИТЕЛЬ ВИБРАЦИИ | 2013 |
|
RU2536097C1 |
ШИРОКОДИАПАЗОННЫЙ КАЛИБРАТОР, УПРАВЛЯЕМЫЙ ДИФФЕРЕНЦИАЛЬНЫМ ВОЛЬТМЕТРОМ | 2006 |
|
RU2333505C1 |
ИЗМЕРИТЕЛЬ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ | 2003 |
|
RU2260245C2 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ | 1993 |
|
RU2099678C1 |
Изобретение относится к транспортной измерительной технике и предназначено для использования при измерении ускорения автомобиля в системе электронного управления двигателем. Устройство содержит чувствительный пьезоэлемент, RC-фильтр низкой частоты, потенциалозадающий резистор, включенный параллельно конденсатору RC-фильтра, операционный усилитель, подключенный к выходу RC-фильтра, источник опорного напряжения, соответствующий полюс которого соединен с общим выводом чувствительного пьезоэлемента, конденсатора RC-фильтра и потенциалозадающего резистора. Между соответствующими выводами чувствительного пьезоэлемента и резистора RC-фильтра включен термостабильный компенсирующий конденсатор. Принятое включение конденсатора, имеющего практически нулевой температурный коэффициент емкости, позволяет уменьшить относительную погрешность измерения, обусловленную изменением собственной емкости чувствительного пьезоэлемента в заданном диапазоне температур. Упрощается также настройка акселерометра, так как снижается чувствительность электрической схемы к разбросу собственной емкости чувствительного пьезоэлемента. 1 з.п.ф-лы, 1 ил.
где С1мин - минимальное значение собственной емкости чувствительного пьезоэлемента в заданном диапазоне температур;
С2 - емкость компенсирующего конденсатора;
К - коэффициент, учитывающий, минимум во сколько раз необходимо уменьшить относительную погрешность измерений, обусловленную изменением собственной емкости чувствительного пьезоэлемента в заданном диапазоне температур.
Емкостной измеритель перемещений | 1980 |
|
SU1037053A1 |
US 5095751 А, 17.03.1992 | |||
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ АКСЕЛЕРОМЕТР | 1998 |
|
RU2150117C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ АКСЕЛЕРОМЕТР | 1999 |
|
RU2152621C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ АКСЕЛЕРОМЕТР | 1995 |
|
RU2097772C1 |
Авторы
Даты
2003-01-20—Публикация
2002-04-10—Подача