Настоящее изобретение относится к обработке жидкостей и шламов, а более конкретно к способу и устройству для уничтожения бактерий в жидкостях и снижения размера частиц нерастворимых материалов в шламах.
В патенте США 4261521 описывается пара вихревых сопел, применяемых для изменения молекулярной решетки любой жидкости, проходящей через них, чтобы отделить газы и агломерировать твердые вещества. Вихревые сопла расположены напротив и обращены друг к другу. Они придают жидкости, проходящей через них, вращение. Вихревые сопла выбрасывают потоки вращаемой жидкости с высокой скоростью таким образом, что два потока сталкиваются приблизительно на полпути между выпускными отверстиями вихревых сопел. Столкновение вращаемых потоков создает компрессионные волны в жидкости, которые вместе с высокой скоростью вращаемых потоков генерируют большую кинетическую энергию, передающуюся молекулам жидкости, газам, находящимся в жидкости, и минералам, растворенным в ней. Кроме того, компрессионные волны производят сдвигающее действие, способствующее разрыву молекулярной структуры жидкости. Таким образом, компрессионные волны и последующее нарастание кинетической энергии облегчает разрыв связей между отдельными молекулами жидкости, молекулами жидкости и газов и молекулами жидкости и растворенными минералами.
В патенте США 5318702 предпринята попытка усовершенствовать патент США 4261521 введением в каждое вихревое сопло по меньшей мере одной пары щелей, проходящих через стенки вихревых сопел. Каждая отдельная щель сообщается с камерой вокруг вихревых сопел, которая, в свою очередь, через трубку сообщается с выходным потоком из вихревых сопел. Большее число щелей в вихревых соплах способствует высвобождению захваченных газов и агломерации минералов посредством удаления фракции жидкости из вращающихся потоков в процессе их циркуляции по вихревым соплам до выброса. Удаляя небольшую часть жидкости из двух потоков, вращающихся в вихревых соплах, щели отделяют молекулы жидкости, а также многие из свободных электронов и элементарные ионы, возникающие при столкновении двух вращающихся в противоположных направлениях потоков. При удалении молекул жидкости, свободных электронов и ионов из двух вращающихся потоков щели усиливают способность компрессионных волн к дальнейшему расщеплению жидкости на ее составные части, так как их удаление ослабляет связи молекул, остающихся во вращающихся потоках.
Хотя оба патента США 4261521 и 5318702 обеспечивают освобождение захваченных газов и агломерацию минералов в суспензии, было выявлено, что повышение скорости вращаемых потоков повысит эффективность работы вихревых сопел по высвобождению газов и агломерации минералов. Кроме того, повышение скорости вращаемых потоков облегчает уничтожение бактерий в жидкостях. Повышенная скорость вращаемых потоков увеличивает силу компрессионных волн до момента, когда они быстро расширяют и сжимают бактерии. Быстрое расширение и сжатие разрывает клеточную структуру бактерий, что и уничтожает их.
Патент США 5435913 вносит некоторое усовершенствование в сравнении с патентами США 4261521 и 5318702 введением блока вихревого сопла, увеличивающего скорость вращающихся потоков. Блок вихревого сопла состоит из первой пары вихревых сопел, включающих первое вихревое сопло в каскаде со вторым, и второй пары вихревых сопел, включающих третье вихревое сопло в каскаде с четвертым. Каждое из четырех сопел получает жидкость через впускное отверстие и придает жидкости вращение при прохождении через него. Вращаемые потоки жидкости первого и второго вихревых сопел соединяются во втором вихревом сопле и создают единый высокоскоростной поток жидкости. Аналогичным образом вращаемые потоки жидкости третьего и четвертого вихревых сопел соединяются в четвертом вихревом сопле и создают единый высокоскоростной поток жидкости. Первая и вторая каскадные пары вихревых сопел расположены напротив и обращены друг к другу, так что их высокоскоростные потоки жидкости сталкиваются приблизительно в средней точке камеры, в которую заключены каскадные пары вихревых сопел. Столкновение струй жидкости с повышенной скоростью создает в жидкости компрессионные волны с увеличенной амплитудой, что более эффективно выводит газы и агломерирует твердые вещества, а, кроме того, разрушает бактерии внутри жидкости. Хотя каскадные пары вихревых сопел разрушают бактерии в жидкостях, для эффективного разрушения бактерий необходимо всего лишь на немного повысить скорость жидкостных потоков и соответственно увеличить амплитуду компрессионных волн.
В соответствии с настоящим изобретением устройство для обработки жидкостей и шламов включает первое и второе сопла, каждое с впускным отверстием, связанным с источником жидкости или шлама, и выпускным отверстием. Первое вихревое сопло вращает первый поток жидкости или шлама, полученный из первого сопла, и передает первый вращающийся поток жидкости или шлама в камеру. Второе вихревое сопло вращает второй поток жидкости или шлама, полученный из второго сопла, и передает второй вращающийся поток жидкости или шлама в камеру. Первое и второе вихревые сопла расположены напротив и обращены друг к другу, и первый вращаемый поток жидкости или шлама сталкивается со вторым потоком.
Устройство для обработки жидкостей или шламов может еще включать третье и четвертое сопла, впускное отверстие каждого из которых связано с источником жидкости или шлама, и выпускное отверстие. Третье вихревое сопло вращает третий поток жидкости или шлама, полученный из третьего сопла, и передает третий вращающийся поток жидкости или шлама в первое вихревое сопло. Четвертое вихревое сопло вращает четвертый поток жидкости или шлама, полученный из четвертого сопла, и передает четвертый вращающийся поток жидкости или шлама во второе вихревое сопло.
Способ обработки шламов для снижения размера частиц нерастворимого материала включает передачу первого вихревого потока к первому вихревому соплу, вращение первого потока шлама с использованием первого вихревого сопла для получения первого вращаемого потока шлама и передачу первого вращаемого потока шлама в камеру. Способ включает передачу второго потока шлама ко второму вихревому соплу, расположенному напротив первого вихревого сопла, вращение второго потока шлама с помощью первого вихревого сопла с получением второго вращаемого потока шлама и передачу второго вращаемого потока шлама в камеру и столкновение второго вращаемого потока шлама с первым вращаемым потоком шлама.
Следовательно, целью изобретения является блок вихревого сопла, который придает жидкости, текущей через него, достаточную скорость, с тем чтобы уничтожить бактерии внутри жидкости.
Другой задачей изобретения является создание блока вихревого сопла, придающего шламу, текущему через него, достаточную скорость, с тем чтобы снизить размер частиц нерастворимых материалов внутри шлама.
Другие задачи, характерные признаки и преимущества изобретения будут очевидны специалистам данной области техники из последующего описания.
Краткое описание чертежей
Фиг.1 изображает первый вариант блока вихревого сопла, вид сбоку;
фиг.2 - то же, вид спереди;
фиг.3 - второй вариант блока вихревого сопла, вид сбоку;
фиг.4 - то же, вид спереди.
Как показано на фиг.1 и 2, блок 10 вихревого сопла включает части 11 и 12 корпуса и сопла 16 и 17, выполненные любым способом металлообработки или формовкой. Сопла 16 и 17 соединены с частями 11 и 12 корпуса любым хорошо известным способом, таким как прессовая посадка. Часть корпуса 12 образует камеру 13 и включает впускное отверстие 14 для любого подходящего источника жидкости, такого как скважина, муниципальный водопровод или бак/бочка с жидкостью. Насос (не обозначен) подает жидкость под давлением от источника жидкости к впускному отверстию 14. Сопла 16 и 17 подают жидкость к части 11 корпуса. Часть 11 корпуса образует камеру и имеет выпускное отверстие 15, открывающееся в любой подходящий резервуар или средство подачи жидкости, такое как кран, душ или шланг. В целях раскрытия и лучшего понимания изобретения будет описана работа блока вихревого сопла 10 с учетом того, что этот блок выводит газы, агломерирует твердые вещества и разрушает бактерии в любой жидкости.
Часть 11 корпуса вмещает внутри своей камеры сборные блоки вихревых сопел 18-21. Кроме того, часть 11 корпуса включает впускные отверстия 22 и 23, сообщающиеся с камерой 13 части 12 корпуса через сопла 16 и 17 соответственно. Конструкция сборных блоков вихревых сопел 18-21 аналогична описанным в патентах США 4261521; 4957626; 5318702 и 5435913, раскрытия которых включены сюда ссылкой. Части вихревых сопел 24 и 25 в сборных блоках вихревых сопел 18-21 выполнены с применением любого стандартного способа металлообработки или формовкой.
Сборные блоки 18 и 19 вставляют в камеру, образованную частью 11 корпуса, до полного прилегания внутренних краев к выступам 26-29. Выступы 26-29 не дают сборным блокам 18 и 19 уйти полностью в центр камеры, определенной частью 11 корпуса. Местоположение сборных блоков 18 и 19 внутри камеры, определенной частью 11 корпуса таково, что они определяют камеру 30, сообщающуюся с выпускным отверстием 15. Сборные блоки 18 и 19 вихревых сопел имеют О-образные прокладки 31 и 32 соответственно, образующие уплотнение между сборными блоками вихревых сопел 18 и 19 и внутренней поверхностью части 11 корпуса, препятствующее утечке жидкости.
После введения сборных блоков 18 и 19 вихревых сопел в позицию, показанную на Фиг.2, вставляют сборные блоки 20 и 21 вихревых сопел. Они должны плотно сесть на задние части сборных блоков 18 и 19 вихревых сопел соответственно. Сборные блоки 20 и 21 вихревых сопел включают О-образные прокладки 33 и 34 соответственно, которые образуют уплотнение, препятствующее утечке жидкости между сборными блоками 20 и 21 вихревых сопел и внутренней поверхностью части 11 корпуса.
Когда сборные блоки 18-21 вихревых сопел установлены и закреплены внутри камеры, определенной частью 11 корпуса, они образуют вихревые сопла 24 и 25. Вихревые сопла 24 и 25 расположены напротив и обращены друг к другу, так что потоки воды, выходящие из выпускных отверстий 35 и 36 соответственно, будут сталкиваться приблизительно в серединной точке камеры 30. В сборных блоках 18 и 19 вихревых сопел внутренние поверхности 37 и 38 вихревых сопел 24 и 25 соответственно имеют форму усеченного конуса. Опора между сборными блоками 18 и 20 вихревых сопел образует циркулярную часть 40, которая сообщается с впускным отверстием 22. Аналогично этому опора между сборными блоками 19 и 21 вихревых сопел образует циркулярную часть 42, сообщающуюся с впускным отверстием 23.
Таким образом, в работе насос (не обозначен) закачивает воду в камеру 13 через впускное отверстие 14. Вода поступает в камеру 13 со скоростью, зависимой от размера насоса. Вода течет из камеры 13 в сопла 16 и 17 части 10 корпуса. Сопло 16 имеет внутреннюю поверхность 43 в виде усеченного конуса, которая суживается на конус внутрь от впускного отверстия 44 к выпускному отверстию 45. Аналогично внутренняя поверхность 46 сопла 17 представлена также в виде усеченного конуса и суживается на конус внутрь от впускного отверстия 47 к выпускному отверстию 48. Сужение сопел 16 и 17 внутрь на конус обеспечивает повышение давления потока воды, проходящего через них. Следовательно, скорость потока воды, выходящего из сопел 16 и 17, повышается благодаря повышению давления в потоке воды, протекающего через сопла 16 и 17.
В результате сопла 16 и 17 повышают скорость потока воды, поступающего в вихревые сопла 24 и 25, что избавляет от необходимости увеличивать размер насоса. В этом предпочтительном варианте специалисту ясно, что поскольку задача сопел 16 и 17 заключается в том, чтобы повысить скорость потоков воды, входящих в вихревые сопла 24 и 25, сопла 16 и 17 можно заменить вихревыми соплами, что еще больше повысит скорость потоков воды, входящих в вихревые сопла 24 и 25 через сопла 16 и 17. Потоки воды из сопел 16 и 17 текут к впускным отверстиям 22 и 23 соответственно, которые передают их в соответствующие циркулярные части 40 и 42 вихревых сопел 24 и 25. Циркулярные части 40 и 42 придают циркулярное вращение потокам воды и передают циркулярно вращающиеся потоки воды во внутренние усеченно-конические поверхности 37 и 38 соответственно. Поверхности 37 и 38 поддерживают циркулярное вращение своих соответствующих потоков воды и передают циркулярно вращающиеся водяные потоки к соответствующим выпускным отверстиям 35 и 36 из вихревых сопел 24 и 25. Хотя водяные потоки вращаются циркулярно в вихревых соплах 24 и 25, они выходят из сопел 24 и 25 через соответствующие выпускные отверстия 35 и 36 линейно.
Циркулярно вращающиеся потоки воды выходят из вихревых сопел 24 и 25 через выпускные отверстия 35 и 36 соответственно и сталкиваются приблизительно в серединной точке камеры 30. При столкновении выходящих струй воды внутри вращаемых водяных потоков создаются компрессионные волны. Компрессионные волны внутри вращаемых потоков воды быстро расширяют и сжимают бактерии в воде до момента, когда клеточные структуры разрываются, приводя в конечном итоге к уничтожению бактерий.
Как показано на фиг.3 и 4, блок 50 вихревых сопел включает части 51 и 53 корпуса и сопла 56-59, которые выполнены любыми стандартными способами металлообработки или формовкой. Сопла 56-59 соединены с частями 51 и 52 корпуса любым хорошо известным способом, таким как прессовая посадка. Часть корпуса 51 образует камеру 54 и включает впускное отверстие 55 для любого подходящего источника жидкости, такого как скважина, муниципальный водопровод или бак/бочка с жидкостью. Насос (не обозначен) подает жидкость под давлением от источника жидкости к впускному отверстию 55. Сопла 56-59 подают жидкость к части 53 корпуса. Часть 53 корпуса образует камеру и включает выпускное отверстие 60, открывающееся в любой подходящий резервуар или средство подачи жидкости, такое как кран, душ или шланг. В целях раскрытия и лучшего понимания изобретения работа блока 50 вихревых сопел для уничтожении бактерий в воде будет описана с учетом того, что блок 50 вихревых сопел выводит газы, агломерирует твердые вещества и разрушает бактерии в любой жидкости.
Часть 53 корпуса вмещает внутри своей камеры сборные блоки 61-66 вихревых сопел. Кроме того, часть 53 корпуса имеет впускные отверстия 67-70, сообщающиеся с соответствующими соплами 56-59 части 52 корпуса. Конструкция сборных блоков вихревых сопел 61-66 аналогична конструкциям, описанным в патентах США 4261521; 4957626; 5318702 и 5435913, которые включены сюда ссылкой. Каждый сборный блок 61-66 вихревых сопел выполнен с применением любого стандартного способа металлообработки или формовки и вмещает вихревые сопла 71-74.
Сборные блоки 61 и 62 вихревых сопел вставляют в камеру, образованную частью 53 корпуса, до полного прилегания внутренних краев к выступам 75-78. Выступы 75-78 не дают блокам 61 и 62 уйти полностью в центр камеры, образованной частью 53 корпуса. Местоположение сборных блоков 61 и 62 вихревых сопел внутри камеры, образованной частью 53 корпуса, таково, что они определяют камеру 79, сообщающуюся с выпускным отверстием 60.
Сборные блоки 18 и 19 вихревых сопел имеют О-образные прокладки 80 и 81 соответственно, которые образуют уплотнение, препятствующее утечке жидкости между сборными блоками 61 и 62 вихревых сопел и внутренней поверхностью части 53 корпуса.
После введения сборных блоков 61 и 62 вихревых сопел в позицию, показанную на фиг.2, вставляют сборные блоки 63 и 64 вихревых сопел до полного прилегания к задним частям сборных блоков 61 и 62 соответственно. Наконец, сборные блоки 65 и 66 вставляют до полного прилегания к задним частям сборных блоков 63 и 64 соответственно. Сборные блоки вихревых сопел 65 и 66 включают О-образные прокладки 82 и 83 соответственно, образующие уплотнение, препятствующее утечке жидкости между сборными блоками вихревых сопел 65 и 66 и внутренней поверхностью части 53 корпуса.
В своем положении внутри камеры, образованной частью 53 корпуса, сборные блоки 61-66 вихревых сопел вмещают вихревые сопла 71-74. Вихревые сопла 71 и 72 расположены так, что они обращены друг к другу, и потоки воды, выходящие из выпускных отверстий 84 и 85 соответственно, будут сталкиваться приблизительно в серединной точке камеры 79. В сборных блоках 61 и 62 вихревых сопел внутренние поверхности 86 и 87 вихревых сопел 71 и 72 соответственно имеют форму усеченного конуса. Стык сборного блока 63 с блоком 61 определяет канал 88, сообщающийся с впускным отверстием 68 и циркулярной частью 89. Кроме того, выпускное отверстие 90 из вихревого сопла 73 сообщается с циркулярной частью 89 вихревого сопла 71. Аналогично этому блоки 62 и 64 определяют канал 91, сообщающийся с впускным отверстием 69 и циркулярной частью 92, в то время как выпускное отверстие 93 из вихревого сопла 74 сообщается с циркулярной частью 92 вихревого сопла 72.
Сборный блок 63 вихревого сопла образует внутреннюю поверхность 94 в виде усеченного конуса, а смежная часть между сборными блоками 63 и 65 образует канал 95, сообщающийся с впускным отверстием 67 и циркулярной частью 96. Сборный блок 64 вихревого сопла определяет внутреннюю поверхность 97 в виде усеченного конуса, а смежная часть между сборными блоками 64 и 66 образует канал 98, сообщающийся с впускным отверстием 70 и циркулярной частью 99.
Таким образом, в работе насос (не обозначен) закачивает воду в камеру 54 через впускное отверстие 55. Вода входит в камеру 54 со скоростью, зависимой от размера насоса. Вода течет из камеры 54 в сопла 56-59 части 52 корпуса. Каждое сопло 56-59 имеет внутреннюю поверхность 100-103 в виде усеченного конуса, которая суживается на конус внутрь от впускных отверстий 104-107 к соответствующим выпускным отверстиям 108-111. Сужение сопел 56-59 на конус обеспечивает повышение давления потока воды, проходящего через них. Следовательно, скорость потока воды, выходящего из сопел 56-59, повышается благодаря повышению давления потока воды, проходящего через них. Итак, сопла 56-59 повышают скорость потока воды, входящего в вихревые сопла 71-74, что избавляет от необходимости увеличивать размер насоса. В этом предпочтительном варианте специалисту ясно, что поскольку цель сопел 56-59 заключается в том, чтобы повысить скорость потоков воды, входящих в вихревые сопла 71-74, сопла 56-59 можно заменить вихревыми соплами, что еще больше повысит скорость потоков воды, входящих в вихревые сопла 71-74 через сопла 56-59.
Потоки воды текут из сопел 56-59 в соответствующие каналы 88, 91, 95 и 98 через впускные отверстия 67-70. Каналы 88, 91, 95 и 98 передают потоки воды к соответствующим циркулярным частям 89, 92, 96 и 99 вихревых сопел 71-74. Циркулярные части 89, 92, 96 и 99 придают циркулярное вращение потокам воды и передают циркулярно вращающиеся потоки воды на внутренние поверхности 86, 87, 94 и 97 соответственно. Внутренние усеченно-конические поверхности 86, 87, 94 и 97 поддерживают циркулярное вращение соответствующих потоков воды и передают циркулярно вращающиеся водяные потоки из вихревых сопел 71-74 к соответствующим выпускным отверстиям 84, 85, 90 и 93. Хотя водяные потоки в вихревых соплах 71-74 вращаются циркулярно, они фактически линейно покидают сопла 71-74 через соответствующие выпускные отверстия 84, 85, 90 и 93. Благодаря каскадной конфигурации вихревых сопел 73 и 74, потоки воды, выходящие из выпускных отверстий 90 и 93, входят в вихревые сопла 71 и 72 соответственно. Эти циркулярно вращаемые потоки воды соединяются с циркулярно вращаемыми потоками воды внутри вихревых сопел 71 и 72, чтобы повысить скорость вращаемых в них водяных потоков. Кроме того, циркулярно вращаемые потоки воды, выходящие из вихревых сопел 73 и 74, приходят в контакт с соответствующим циркулярно вращаемым потоком воды внутри вихревых сопел 71 и 72 так, что они создают в них компрессионные волны.
Соединенные циркулярно вращаемые водяные потоки из вихревых сопел 71 и 73 и соединенные циркулярно вращаемые водяные потоки из вихревых сопел 72 и 74 выходят из вихревых сопел 71 и 72 через выпускные отверстия 84 и 85 соответственно и сталкиваются приблизительно в серединной точке камеры 79. При столкновении водных потоков, выходящих из вихревых сопел 71 и 72, создаются дополнительные компрессионные волны, которые соединяются с ранее образованными компрессионными волнами и создают компрессионные волны с большими амплитудами, чем у первоначальных волн. Компрессионные волны с увеличенной амплитудой внутри вращаемых потоков воды быстро расширяют и сжимают бактерии внутри воды до момента, когда клеточные структуры разрываются, приводя в конечном итоге к гибели бактерий.
В способе снижения размера частиц нерастворимого материала в шламе необходимое минимальное устройство представляет собой пару обращенных друг к другу вихревых сопел, сообщающихся непосредственно с источником шлама. Тем не менее, специалисту понятно, что блоки 10 и 50 вихревых сопел предпочтительных вариантов обеспечат лучшие результаты. Примером шлама может быть цемент, смешанный с соответствующей частью воды, который затем обрабатывают с целью снижения размера частиц цемента с образованием, таким образом, микроцемента.
Способ с блоком 10 вихревого сопла включает закачивание шлама в камеру 13 через впускное отверстие 14. Шлам входит в камеру 13 со скоростью, зависимой от размера насоса. Шлам поступает из камеры 13 в сопла 16 и 17 части 10 корпуса. Сопла 16 и 17 повышают давление потоков шлама, проходящих через них до попадания потоков шлама в соответствующие вихревые сопла 24 и 25. Специалисту понятно, что поскольку задачей сопел 16 и 17 является повышение скорости потоков шлама, входящего в вихревые сопла 24 и 25, сопла 16 и 17 можно заменить соплами, которые еще больше увеличат скорость потоков шлама, поступающих в вихревые сопла 24 и 25 через сопла 16 и 17.
Потоки шлама текут из сопел 16 и 17 в впускные отверстия 22 и 23 соответственно, которые передают потоки шлама в соответствующие циркулярные части 40 и 42 вихревых сопел 24 и 25. Циркулярные части 40 и 42 придают циркулярное вращение потокам шлама и передают циркулярно вращающиеся потоки шлама к внутренним конусно-усеченным поверхностям 37 и 38 соответственно. Внутренние конусно-усеченные поверхности 37 и 38 поддерживают циркулярное вращение этих шламовых потоков и передают их из вихревых сопел 24 и 25 к соответствующим выпускным отверстиям 35 и 36. Хотя шламовые потоки вращаются циркулярно в вихревых соплах 24 и 25, они выходят из сопел через соответствующие выпускные отверстия 35 и 36 линейно. Циркулярно вращающиеся шламовые потоки покидают вихревые сопла 24 и 25 через выпускные отверстия 35 и 36 соответственно и сталкиваются приблизительно в серединной точке камеры 30, уменьшая размер частиц нерастворимого материала в шламе.
Способ с блоком 50 вихревых сопел включает закачивание шлама в камеру 54 через впускное отверстие 55. Шлам поступает в камеру 54 со скоростью, зависящей от размера насоса. Шлам течет из камеры 54 в сопла 56-59 части 52 корпуса. Сопла 56-59 повышают давление шламовых потоков, проходящих через них, до передачи этих потоков к соответствующим вихревым соплам 71-74. Специалисту понятно, что поскольку задачей сопел 56-59 является повышение скорости шламовых потоков, поступающих в вихревые сопла 71-74, сопла 56-59 можно заменить соплами, еще более повышающими скорость шламовых потоков, поступающих в вихревые сопла 71-74 через сопла 56-59.
Потоки шлама текут из сопел 56-59 в соответствующие каналы 88, 91, 95 и 98 через впускные отверстия 67-70. Каналы 88, 91, 95 и 98 передают потоки шлама в соответствующие циркулярные части 89, 92, 96 и 99 вихревых сопел 71-74. Циркулярные части 89, 92, 96 и 99 придают циркулярное вращение потокам шлама и передают циркулярно вращающиеся потоки шлама на внутренние конусно-усеченные поверхности 86, 87, 94 и 97 соответственно. Внутренние конусно-усеченные поверхности 86, 87, 94 и 97 поддерживают циркулярное вращение этих шламовых потоков и передают их из вихревых сопел 71-74 к соответствующим выпускным отверстиям 84, 85, 90 и 93. Хотя шламовые потоки вращаются циркулярно в вихревых соплах 71-74, они покидают сопла через соответствующие выпускные отверстия 84, 85, 90 и 93 линейно.
Благодаря каскадной конфигурации вихревых сопел 73 и 74, шламовые потоки, выходящие из выпускных отверстий 90 и 93, поступают соответственно в вихревые сопла 71 и 72. Эти циркулярно вращающиеся шламовые потоки соединяются с циркулярно вращающимися шламовыми потоками внутри вихревых сопел 71 и 72 с целью повысить скорость циркулярно вращающихся в них шламовых потоков. Помимо этого, циркулярно вращающиеся шламовые потоки, покидая сопла 73 и 74, приходят в контакт с соответствующим циркулярно вращающимся шламовым потоком внутри вихревых сопел 71 и 72 таким образом, что они сокращают размер частиц нерастворимого материала в шламе. Соединенные циркулярно вращающиеся шламовые потоки из вихревых сопел 71 и 73 и соединенные циркулярно вращающиеся шламовые потоки из вихревых сопел 72 и 74 выходят из сопел 71 и 72 через выпускные отверстия 84 и 85 соответственно и сталкиваются приблизительно в серединной точке камеры 79, еще более уменьшая в шламе размер частиц нерастворимого материала.
Хотя настоящее изобретение описано на примере показательных вариантов, такое описание является чисто иллюстративным и специалистам данной области очевидно, что возможны многие варианты, эквиваленты и вариации с разной степенью, не выходящие за рамки объема данного изобретения. Представленное же описание никоим образом не ограничивает настоящее изобретение, объем которого определяется только сопровождающей его формулой изобретения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОСТИ | 2001 |
|
RU2254908C2 |
ФИЛЬТР ДЛЯ ОЧИСТКИ ЖИДКОСТИ | 1990 |
|
RU2035963C1 |
УСТРОЙСТВО ДЛЯ ВЫПУСКА СРЕД | 1988 |
|
RU2067896C1 |
СТРУЙНОЕ ВОДОПРОВОДНОЕ СОПЛО | 1995 |
|
RU2142342C1 |
ВОЗДУХООЧИСТИТЕЛЬНОЕ УСТРОЙСТВО | 2017 |
|
RU2753559C1 |
ВРАЩАЮЩИЙСЯ ДИСКОВЫЙ ФИЛЬТР, ИМЕЮЩИЙ СИСТЕМУ ПРОМЫВКИ ОБРАТНЫМ ПОТОКОМ, КОТОРАЯ ВКЛЮЧАЕТ ОПОРНЫЙ ЭЛЕМЕНТ ПАТРУБКА СОСРЕДОТОЧЕННОЙ ПОДАЧИ | 2019 |
|
RU2756062C1 |
СИСТЕМА САНИТАРНОЙ ОБРАБОТКИ И СИСТЕМА КОМПОНЕНТОВ, ПРОИЗВОДЯЩИХ ОЗОНИРОВАННУЮ ЖИДКОСТЬ | 2004 |
|
RU2371395C2 |
УСТРОЙСТВО ДЛЯ СЕПАРАЦИИ КОМПОНЕНТОВ ПОТОКА ТЕКУЧЕЙ СРЕДЫ | 2018 |
|
RU2754564C2 |
Карбюраторный двигатель внутреннего сгорания | 1984 |
|
SU1281703A1 |
УСТРОЙСТВО И СПОСОБ ДЛЯ ОБРАБОТКИ СТОЧНЫХ ВОД | 2009 |
|
RU2494976C2 |
Способ предназначен для снижения размера частиц нерастворимого материала в шламах. Способ включает подачу первого шламового потока к первому вихревому соплу для придания вращения потоку, подачу второго потока ко второму соплу и столкновение двух вращаемых потоков шлама в камере. Технический результат состоит в снижении размера частиц нерастворимого материала в шламах и уничтожении бактерий. 2 с.п.ф-лы, 4 ил.
US 5318702 A, 07.06.1994 | |||
US 5435913 A, 25.07.1995 | |||
US 4838701 A, 13.06.1989. |
Авторы
Даты
2003-03-20—Публикация
1998-12-15—Подача