СПОСОБ ВЕДЕНИЯ ПРОСТРЕЛОЧНО-ВЗРЫВНЫХ РАБОТ В СКВАЖИНАХ (ВАРИАНТЫ) Российский патент 2003 года по МПК E21B43/116 

Описание патента на изобретение RU2202036C2

Изобретение относится к нефтегазодобывающей промышленности, а конкретнее - к способам ведения прострелочно-взрывных работ (ПВР) в скважинах, в том числе - в скважинах со спущенными насосно-компрессорными трубами (НКТ), где необходимо уменьшить вредное воздействие взрыва на внутрискважинное оборудование, обсадную колонну и заколонный цементный камень, расположенные вне места взрыва.

Известны способы создания защитных экранов для предохранения от разрушения при взрыве обсадных труб и заколонного цементного камня, расположенных вне места взрыва, включающие размещение в скважине цементного или песочно-гравийных мостов-экранов. Постановка таких мостов-экранов требует применения специального оборудования и, главное, необходимость их разбуривания после взрыва для освоения скважин - длительный и трудоемкий технологический процесс.

Наиболее близким аналогом изобретения является способ ведения прострелочно-взрывных работ в скважинах, включающий размещение в интервале продуктивного пласта прострелочно-взрывной аппаратуры и демпфирующих элементов для ослабления воздействия взрыва на внутрискважинное оборудование, обсадную колонну и слой заколонного цементного камня, расположенных вне места взрыва [1].

Недостатком известного способа является его недостаточная эффективность.

Техническим результатом изобретения является увеличение эффективности ослабления воздействия взрыва прострелочно-взрывной аппаратуры (ПВА) на обсадную колонну и цементный камень вне очага взрыва.

Необходимый технический результат по первому варианту способа заключается в том, что по способу ведения прострелочно-взрывных работ в скважинах, включающему размещение в интервале продуктивного пласта прострелочно-взрывной аппаратуры и демпфирующих элементов для ослабления воздействия взрыва на внутрискважинное оборудование, обсадную колонну и слой заколонного цементного камня, расположенных вне места взрыва, согласно изобретению при проведении прострелочно-взрывных работ в скважинах со спущенными насосно-компрессорными трубами демпфирующие элементы размещают в нижней части насосно-компрессорных труб и выполняют их в виде жестких колец на внешней поверхности насосно-компрессорных труб и в количестве (n), определяемом соотношением:

где ρ0 - плотность скважинной жидкости, кг/м3;
С0 - скорость звука в скважинной жидкости, м/с;
ΔРд - избыточное давление в скважине над демпфирующими элементами, Па;
ΔР0 - избыточное давление в скважине в интервале продуктивного пласта, Па;
D0 - внутренний диаметр обсадной колонны, м;
Dнкт - внешний диаметр насосно-компрессорных труб, м;
Dд - внешний диаметр демпфирующих колец, м;
β - гидравлический коэффициент трения;
l0 - расстояние между кольцами.

Необходимый технический результат по второму варианту способа заключается в том, что по способу ведения прострелочно-взрывных работ в скважинах, включающему размещение в интервале продуктивного пласта прострелочно-взрывной аппаратуры и демпфирующих элементов для ослабления воздействия взрыва на внутрискважинное оборудование, обсадную колонну и слой заколонного цементного камня, расположенных вне места взрыва, согласно изобретению демпфирующие элементы размещают на трубе, располагаемой с одной или с двух сторон прострелочно-взрывной аппаратуры, и выполняют в виде жестких колец на внешней поверхности трубы, которую спускают в скважину вместе с прострелочно-взрывной аппаратурой, при этом количество (n) колец определяют соотношением:

где ρ0 - плотность скважинной жидкости, кг/м3;
С0 - скорость звука в скважинной жидкости, м/с;
ΔРд - избыточное давление в скважине над демпфирующими элементами, Па;
ΔР0 - избыточное давление в скважине в интервале продуктивного пласта, Па;
D0 - внутренний диаметр обсадной колонны, м;
Dтр - внешний диаметр трубы с демпфирующими кольцами, м;
Dд - внешний диаметр демпфирующих колец, м;
β - гидравлический коэффициент трения;
l0 - расстояние между кольцами.

Известно [2] , что избыточное давление ΔР0=Р-Р00 - гидростатическое давление), созданное в скважине ПВА, с расстоянием Х уменьшается по закону

β - гидравлический коэффициент трения (0,015-0,05);
ρ0, С0 - плотность скважинной жидкости и скорость звука в ней;
D0 - внутренний диаметр обсадной колонны;
Dнкт - внешний диаметр НКТ.

Из соотношения следует, что увеличение гидравлического коэффициента приведет к увеличению ослабления перепада давлений от расстояния Х.

Если вдоль НКТ на длине L расположить демпфирующие элементы в виде колец в количестве "n" штук с расстояниями между ними "l0", то гидравлический коэффициент согласно [3] определится из соотношения

где

где Dд - диаметр демпфирующих колец.

Подставляя (2) в (1), получим количество демпфирующих элементов, необходимое для снижения избыточного давления от ΔР0 до ΔРд на расстоянии L = nl0:

На фиг.1-3 представлена схема расположения ПВА 1 в скважине 2 под НКТ 3, нижняя часть которых снабжена демпфирующими элементами в виде колец 4.

Нередко с целью ограничения зоны обработки продуктивного пласта скважины (фиг. 2) на НКТ устанавливают механические или гидравлические пакеры [1]. Использование демпфирующих элементов позволит в этих случаях значительно уменьшить воздействие взрыва на пакеры, сохранив их целостность.

Приведем пример реализации предлагаемого способа ведения ПВР в скважинах со спущенными НКТ.

Пусть в скважине (D0= 5"= 126 мм) со спущенными НКТ (Dнкт =73 мм) на глубине, соответствующей гидростатическому давлению Р0 = 50 МПа, необходимо провести обработку пласта малогабаритным пороховым генератором давления, спускаемым на кабеле. Известно [4], что для успешной обработки пласта пороховой генератор выбирают такой длины, т.е. массы, чтобы в скважине в зоне горения создать давление, равное горному, т.е. перепад давления ΔР0 = Рг - Р0 = 1,5Р0 = 75 МПа. Эти давления вызовут разрушение обсадной колонны и цементного камня. Чтобы снизить это давление до ΔР0 = 30 МПа, согласно выведенному соотношению необходимо снабдить спущенные НКТ в нижней части демпфирующими элементами в виде колец шириной 10 мм и расстояниями между ними l0 = 20 мм диаметром Dм = 113 мм в количестве

На длине L = nl0 = 45•20 = 900 мм давление будет ослаблено до 30 МПа. Без колец давление было бы равно:

Таким образом, если нижнюю часть НКТ длиной всего в 900 мм снабдить демпфирующими элементами в виде колец в количестве 45 штук, то можно уменьшить перепад давления от 75 МПа до 30 МПа.

В случае, когда работы проводят в скважинах без спущенных НКТ, с целью ослабления воздействия взрыва ПВА на обсадную колонну и цементный камень вне очага взрыва предлагают ведение ПВР в скважинах, при котором сверху или с двух сторон ПВА, как показано на фиг.3, располагают трубу с демпфирующими элементами 1 и в скважину на кабеле 2 спускают всю систему.

Количество демпфирующих элементов определяют соотношением (3) при Dнкт = Dтр, где Dтр - внешний диаметр трубы с демпфирующими элементами.

Если в вышерассмотренном примере взять Dнкт = Dтр = 100 мм, то количество колец будет равно

На длине трубы L = nl0 = 48•20 = 960 мм перепад давления будет ослаблен от 75 МПа до 30 МПа.

Источники информации
1. SU 1066254, 15.01,1994.

2. Чарный И.А. Неустановившееся движение реальной жидкости в трубах. - М.: Недра, 1975.

3. Альтшуль А.Д. Гидростатические сопротивления. - М.: Недра, 1982.

4. Инструкция по применению пороховых генераторов давления ПГД.БК в скважинах. - М.: ВИЭМС, 1989.

Похожие патенты RU2202036C2

название год авторы номер документа
СПОСОБ ИНИЦИИРОВАНИЯ ПЕРФОРАТОРОВ, СПУСКАЕМЫХ НА НАСОСНО-КОМПРЕССОРНЫХ ТРУБАХ 2012
  • Ликутов Александр Рюрикович
  • Меркулов Александр Алексеевич
  • Перепелицын Александр Иванович
  • Сильвачев Виктор Владимирович
  • Шуров Виктор Михайлович
RU2500881C1
КУМУЛЯТИВНЫЙ ПЕРФОРАТОР ДЛЯ СКВАЖИНЫ 2004
  • Ликутов А.Р.
  • Сиротин В.Т.
  • Тебякин В.М.
RU2241115C1
КУМУЛЯТИВНЫЙ ПЕРФОРАТОР ДЛЯ СКВАЖИНЫ 2012
  • Тебякин Виктор Михайлович
RU2487991C1
УСТРОЙСТВО ДЛЯ ВСКРЫТИЯ И ГАЗОДИНАМИЧЕСКОЙ ОБРАБОТКИ ПЛАСТА 2000
  • Дуванов А.М.
  • Гайворонский И.Н.
  • Воробьев Л.С.
  • Тебякин В.М.
  • Балдин А.В.
  • Новоселов Н.И.
  • Даниленко Г.Г.
RU2194151C2
ТЕПЛОГАЗОГЕНЕРАТОР ДЛЯ УЛУЧШЕНИЯ ФИЛЬТРАЦИИ ПЛАСТА В ЕГО ПРИСКВАЖЕННОЙ ЗОНЕ 2010
  • Дуванов Александр Валентинович
  • Кондаков Олег Николаевич
  • Меркулов Александр Алексеевич
  • Новиков Николай Иванович
  • Улунцев Юрий Григорьевич
RU2439312C1
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ФИЛЬТРАЦИИ ПЛАСТА В ЕГО ПРИСКВАЖИННОЙ ЗОНЕ 2007
  • Меркулов Александр Алексеевич
  • Крощенко Владимир Демьянович
  • Улунцев Юрий Григорьевич
  • Василевский Дмитрий Владимирович
  • Дуванов Александр Валентинович
  • Гимаев Артур Фаатович
RU2338055C1
КУМУЛЯТИВНЫЙ ТРУБОРЕЗ 2004
  • Левин Евгений Александрович
RU2282013C1
КУМУЛЯТИВНЫЙ СЕКЦИОННЫЙ ПЕРФОРАТОР ДЛЯ СКВАЖИНЫ 2012
  • Тебякин Виктор Михайлович
  • Новиков Николай Иванович
  • Пигарев Владимир Сергеевич
  • Кожин Владимир Николаевич
  • Хисметов Тофик Велиевич
RU2492315C1
ГАЗОГЕНЕРАТОР НА ТВЕРДОМ ТОПЛИВЕ ДЛЯ СКВАЖИНЫ 2004
  • Крощенко В.Д.
  • Гайворонский И.Н.
  • Дуванов А.В.
  • Новиков Н.И.
  • Грибанов Н.И.
  • Павлов В.И.
  • Залогин В.П.
RU2242600C1
УСТРОЙСТВО ДЛЯ ПЕРФОРАЦИИ СКВАЖИНЫ И ОБРАЗОВАНИЯ ТРЕЩИН В ПРИСКВАЖИННОЙ ЗОНЕ ПЛАСТА 2004
  • Крощенко В.Д.
  • Ликутов А.Р.
  • Меркулов А.А.
  • Улунцев Ю.Г.
  • Дудаев С.А.
RU2242590C1

Иллюстрации к изобретению RU 2 202 036 C2

Реферат патента 2003 года СПОСОБ ВЕДЕНИЯ ПРОСТРЕЛОЧНО-ВЗРЫВНЫХ РАБОТ В СКВАЖИНАХ (ВАРИАНТЫ)

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при ведения прострелочно-взрывных работ в скважинах. Обеспечивает уменьшение вредного воздействия взрыва на внутрискважинное оборудование, обсадную колонну и цементный камень, расположенные вне места взрыва. Сущность изобретения: способ включает размещение в интервале продуктивного пласта прострелочно-взрывной аппаратуры и демпфирующих элементов для ослабления воздействия взрыва на внутрискважинное оборудование, обсадную колонну и слой заколонного цементного камня, расположенных вне места взрыва. При проведении прострелочно-взрывных работ в скважинах со спущенными насосно-компрессорными трубами (НКТ) демпфирующие элементы размещают в нижней части насосно-компрессорных труб и выполняют их в виде жестких колец на внешней поверхности НКТ и в количестве, определяемом по аналитическому выражению. По второму варианту демпфирующие элементы размещают на трубе, располагаемой с одной или с двух сторон прострелочно-взрывной аппаратуры, и в количестве, которое тоже определяют по аналитическому выражению. 2 с. и 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 202 036 C2

1. Способ ведения прострелочно-взрывных работ в скважинах, включающий размещение в интервале продуктивного пласта прострелочно-взрывной аппаратуры и демпфирующих элементов для ослабления воздействия взрыва на внутрискважинное оборудование, обсадную колонну и слой заколонного цементного камня, расположенных вне места взрыва, отличающийся тем, что при проведении прострелочно-взрывных работ в скважинах со спущенными насосно-компрессорными трубами демпфирующие элементы размещают в нижней части насосно-компрессорных труб и выполняют их в виде жестких колец на внешней поверхности насосно-компрессорных труб и в количестве n, определяемом соотношением:

где ρ0 - плотность скважинной жидкости, кг/м3;
С0 - скорость звука в скважинной жидкости, м/с;
ΔРд - избыточное давление в скважине над демпфирующими элементами, Па;
ΔР0 - избыточное давление в скважине в интервале продуктивного пласта, Па;
D0 - внутренний диаметр обсадной колонны, м;
Dнкт - внешний диаметр насосно-компрессорных труб, м;
Dд - внешний диаметр демпфирующих колец, м;
β - гидравлический коэффициент трения;
l0 - расстояние между кольцами, м.
2. Способ по п.1, отличающийся тем, что над демпфирующими элементами на насосно-компрессорных трубах устанавливают гидравлический или механический пакер. 3. Способ ведения прострелочно-взрывных работ в скважинах, включающий размещение в интервале продуктивного пласта прострелочно-взрывной аппаратуры и демпфирующих элементов для ослабления воздействия взрыва на внутрискважинное оборудование, обсадную колонну и слой заколонного цементного камня, расположенных вне места взрыва, отличающийся тем, что демпфирующие элементы размещают на трубе, располагаемой с одной или с двух сторон прострелочно-взрывной аппаратуры и выполняют в виде жестких колец на внешней поверхности трубы, которую спускают в скважину вместе с прострелочно-взрывной аппаратурой, при этом количество n колец определяют соотношением

где ρ0 - плотность скважинной жидкости, кг/м3;
С0 - скорость звука в скважинной жидкости, м/с;
ΔРд - избыточное давление в скважине над демпфирующими элементами, Па;
ΔР0 - избыточное давление в скважине в интервале продуктивного пласта, Па;
D0 - внутренний диаметр обсадной колонны, м;
Dтр - внешний диаметр трубы с демпфирующими кольцами, м;
Dд - внешний диаметр демпфирующих колец, м;
β - гидравлический коэффициент трения;
l0 - расстояние между кольцами.

Документы, цитированные в отчете о поиске Патент 2003 года RU2202036C2

УСТРОЙСТВО ДЛЯ ПЕРФОРАЦИИ ЗАЦЕМЕНТИРОВАННЫХ ОБСАДНЫХ КОЛОНН 1980
  • Руцкий А.М.
  • Терентьев Ю.И.
  • Опалев В.А.
  • Капралов В.И.
  • Гаврилов В.В.
  • Молочников З.И.
SU1066254A1
КОМПЕНСАТОР ДАВЛЕНИЯ ДЛЯ ВЗРЫВНЫХ ПЕРФОРАЦИОННЫХ РАБОТ В СКВАЖИНЕ 1988
  • Мальцев А.В.
  • Терентьев Ю.И.
  • Неволин В.Г.
  • Ноздрачев И.М.
  • Руцкий А.М.
SU1593329A1
КОМПЕНСАТОР ДАВЛЕНИЙ ДЛЯ ВЗРЫВНЫХ ПЕРФОРАЦИОННЫХ РАБОТ В СКВАЖИНЕ 1992
  • Мальцев А.В.
  • Неволин В.Г.
RU2029076C1
Приспособление для сплющивания папирос 1928
  • М. Бергер
SU10778A1
Затвор для коромысла весов с торможением площадки весов 1925
  • Кац А.И.
SU2611A1

RU 2 202 036 C2

Авторы

Гайворонский И.Н.

Крощенко В.Д.

Павлов В.И.

Санасарян Н.С.

Грибанов Н.И.

Залогин В.П.

Даты

2003-04-10Публикация

2000-02-18Подача